Marine Biotechnology

  • Joel Querellou
  • Jean-Paul Cadoret
  • Michael J. Allen
  • Jonas Collén
Chapter
Part of the Advances in Marine Genomics book series (AMGE, volume 1)

Abstract

Biotechnology based upon genes from the marine environment (sometimes referred to as “blue-biotechnology”) has a considerable, if hitherto relatively unused, potential because of the enormous phylogenetic diversity of marine organisms and the potential for novel undiscovered biological mechanisms, including biochemical pathways. The increasing knowledge of marine genomics has started to have a major impact on the field of marine biotechnology. The advent of the sequenced genome and the development of important metagenomic resources is providing new access to the metabolic diversity of the oceans and is thereby greatly facilitating the development of new products derived from marine biotechnology. This chapter is a brief description of the field of marine biotechnology describing some of the products that have been realised and an analysis of how new genomic resources are being acquired and how they will change the landscape of future marine biotechnology.

Keywords

Marine Species Metagenomic Library Phaeodactylum Tricornutum Marine Fungus Multiple Displacement Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen MJ, Schroeder DC, Donkin A et al (2006a) Genome comparison of two Coccolithoviruses. Virol J 3:15PubMedGoogle Scholar
  2. Allen MJ, Schroeder DC, Holden MT et al (2006b) Evolutionary history of the Coccolithoviridae. Mol Biol Evol 23:86–92PubMedGoogle Scholar
  3. Allen MJ, Wilson WH (2008) Aquatic virus diversity accessed through omic techniques: a route map to function. Curr Opin Microbiol 11:226–232PubMedGoogle Scholar
  4. Amador ML, Jimeno J, Paz-Ares L et al (2003) Progress in the development and acquisition of anticancer agents from marine sources. Ann Oncol 14:1607–1615PubMedGoogle Scholar
  5. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  6. Angly FE, Felts B, Breitbart M et al (2006) The marine viromes of four oceanic regions. PLoS Biol 4:e368PubMedGoogle Scholar
  7. Bertram M, Hildebrandt P, Weiner D et al (2008) Characterization of lipases and esterases from metagenomes for lipid modification. J Am Oil Chem Soc 85:47–53Google Scholar
  8. Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337PubMedGoogle Scholar
  9. Bielaszewska M, Dobrindt U, Gärtner J et al (2007) Aspects of genome plasticity in pathogenic Escherichia coli. Int J Med Microbiol 297:625–639PubMedGoogle Scholar
  10. Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedGoogle Scholar
  11. Breitbart M, Felts B, Kelley S et al (2004) Diversity and population structure of a near-shore marine-sediment viral community. Proc Biol Sci 271:565–574PubMedGoogle Scholar
  12. Breitbart M, Salamon P, Andresen B et al (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA 99:14250–14255PubMedGoogle Scholar
  13. Brügger K, Chen L, Stark M et al (2007) The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C. Archaea 2:127–135PubMedGoogle Scholar
  14. Burkholder PR, Pfister RM, Leitz FH (1966) Production of a pyrrole antibiotic by a marine bacterium. Appl Environ Microbiol 14:649–653Google Scholar
  15. Cadoret J-P, Bardor M, Lerouge P et al (2008) Les microalgues: Usines cellulaires productrices de molécules commerciales recombinants. Med Sci 24:375–382Google Scholar
  16. Cadoret J-P, Bernard O (2008) La production de biocarburant lipidique avec des microalgues : promesses et défis. J Soc Biol 202:201–211PubMedGoogle Scholar
  17. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedGoogle Scholar
  18. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedGoogle Scholar
  19. Chu X, He H, Guo C et al (2008) Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl Microbiol Biotechnol 80:615–625PubMedGoogle Scholar
  20. Cohen GN, Barbe V, Flament D et al (2003) An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 47:1495–1512PubMedGoogle Scholar
  21. Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: Rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35:356–362PubMedGoogle Scholar
  22. De Lorenzo V (2005) Problems with metagenomic screenings. Nat Biotech 23:1045–1046Google Scholar
  23. Dean FB, Hosono S, Fang L et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99:5261–5266PubMedGoogle Scholar
  24. Deckert G, Warren PV, Gaasterland T et al (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358PubMedGoogle Scholar
  25. Deng M-D, Coleman JR (1999) Ethanol synthesis by genetic engineering in Cyanobacteria. Appl Environ Microbiol 65:523–528PubMedGoogle Scholar
  26. Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in yeasts. Nature 430:35–44PubMedGoogle Scholar
  27. Ebel R (2006) Secondary metabolites from marine derived fungi. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, England, pp 73–143Google Scholar
  28. Egorova K, Antranikian G (2007) Biotechnology. In: Garrett RA, Klenk HP (eds) Archaea: evolution, physiology, and molecular biology. Blackwell, MaldenGoogle Scholar
  29. Fedders H, Michalek M, Grötzinger J et al (2008) An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem J 416:65–75PubMedGoogle Scholar
  30. Fieseler L, Hentschel U, Grozdanov L et al (2007) Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl Environ Microbiol 73:2144–2155PubMedGoogle Scholar
  31. Fitz-Gibbon ST, Ladner H, Kim UJ et al (2002) Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci USA 99:984–989PubMedGoogle Scholar
  32. Fukui T, Atomi H, Kanai T et al (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363PubMedGoogle Scholar
  33. Fuller RW, Cardellina JH II, Jurek J et al (1994) Isolation and structure/activity features of halomon-related antitumor monoterpenes from the red alga Portieria hornemannii. J Med Chem 37:4407–4411PubMedGoogle Scholar
  34. Fuller RW, Cardellina II JH, Kato Y et al (1992) A pentahalogenated monoterpene from the red alga Portieria hornemannii produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines. J Med Chem 35:3007–3011PubMedGoogle Scholar
  35. Gasdaska JR, Spencer D, Dickey L (2003) Advantages of therapeutic protein production in the aquatic plant Lemna. Bioprocess J Mar/AprGoogle Scholar
  36. Geng DG, Wang YQ, Wang P et al (2003) Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol 15:451–456Google Scholar
  37. Ghedin E, Claverie JM (2005) Mimivirus relatives in the Sargasso sea. Virol J 2:62PubMedGoogle Scholar
  38. Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the ‘omics’ age. Nat Rev Microbiol 5:820–826PubMedGoogle Scholar
  39. Glockner FO, Kube M, Bauer M et al (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8298–8303PubMedGoogle Scholar
  40. Gogarten JP, Hilario E. (2006) Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 6:94PubMedGoogle Scholar
  41. Gonçalves LG, Lamosa P, Huber R et al (2008) Di-myo-inositol phosphate and novel UDP-sugars accumulate in the extreme hyperthermophile Pyrolobus fumarii. Extremophiles 12:383–389PubMedGoogle Scholar
  42. Goodwin TJ, Butler MI, Poulter RT (2006) Multiple, non-allelic, intein-coding sequences in eukaryotic RNA polymerase genes. BMC Biol 4:38PubMedGoogle Scholar
  43. Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodiv Conserv 6:153–175Google Scholar
  44. Han G, Gable K, Yan L et al (2006) Expression of a novel marine viral single-chain serine palmitoyltransferase and construction of yeast and mammalian single-chain chimera. J Biol Chem 281:39935–39942PubMedGoogle Scholar
  45. Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249PubMedGoogle Scholar
  46. Hankamer B, Lehr F, Rupprecht J et al (2007) Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol Plant 131:10–21PubMedGoogle Scholar
  47. Hansen OC, Stougaard P (1997) Hexose oxidase from the red alga Chondrus crispus: purification, molecular cloning, and expression in Pichia pastoris. J Biol Chem 272:11581–11587PubMedGoogle Scholar
  48. Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182PubMedGoogle Scholar
  49. Henne A, Schmitz RA, Bomeke M et al (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116PubMedGoogle Scholar
  50. Huber JA, Mark WDB, Morrison HG et al (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100PubMedGoogle Scholar
  51. Ivars-Martinez E, Martin-Cuadrado A-B, D‘Auria G et al (2008) Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J 2:1194–1212PubMedGoogle Scholar
  52. Jeon JH, Kim JT, Kang SG et al (2009) Characterization and its potential application of two esterases derived from the arctic sediment metagenome. Mar Biotechnol 11:307–311PubMedGoogle Scholar
  53. Jiang P, Qin S, Tseng CK (2002) Expression of hepatitis B surface antigen gene (HBsAg) in Laminaria japonica (Laminariales Phaeophyta). Chin Sci Bull 47:1438–1440Google Scholar
  54. Jiang P, Qin S, Tseng CK (2003) Expression of the lacZ reporter gene in sporophytes of the seaweed Laminaria japonica (Phaeophyceae) by gametophyte-targeted transformation. Plant Cell Rep 21:1211–1216PubMedGoogle Scholar
  55. Kalyuzhnaya MG, Lapidus A, Ivanova N et al (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26:1029–1034PubMedGoogle Scholar
  56. Kanai T, Imanaka H, Nakajima A et al (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 116:271–282PubMedGoogle Scholar
  57. Kawarabayasi Y, Hino Y, Horikawa H et al (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6:145–152Google Scholar
  58. Kawarabayasi Y, Sawada M, Horikawa H et al (1998) Complete sequence and gene organization of the genome of a hyper- thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5:147–155PubMedGoogle Scholar
  59. Klarzynski O, Plesse B, Joubert J-M et al (2000) Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124:1027–1038PubMedGoogle Scholar
  60. Klemke C, Kehraus S, Wright AD et al (2004) New secondary metabolites from the endophytic fungus Apiospora montagnei. J Nat Prod 67:1058–1063PubMedGoogle Scholar
  61. Koonin EV (2007) Metagenomic sorcery and the expanding protein universe. Nat Biotechnol 25:540–542PubMedGoogle Scholar
  62. Kroth PG (2007) Genetic transformation: a tool to study protein targeting in diatoms. Methods Mol Biol 390:257–267PubMedGoogle Scholar
  63. Kruse O, Rupprecht J, Bader K-P et al (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177PubMedGoogle Scholar
  64. La Scola B, Desnues C, Pagnier I et al (2008) The virophage as a unique parasite of the giant mimivirus. Nature 455:100–104PubMedGoogle Scholar
  65. Langer M, Gabor EM, Liebeton K et al (2006) Metagenomics: an inexhaustible access to nature’s diversity. Biotechnol J 1:815–821PubMedGoogle Scholar
  66. Leary D, Vierros M, Hamon G et al (2009) Marine genetic resources: A review of scientific and commercial interest. Mar Policy 33:183–194Google Scholar
  67. Lee S-H, Lee D-G, Jeon J-H et al (2008) Fibrinolytic metalloprotease and composition comprising the same. WO2008056840Google Scholar
  68. Leon-Banares R, Gonzalez-Ballester D, Galvan A et al (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52PubMedGoogle Scholar
  69. Lim JK, Lee HS, Kim YJ et al (2007) Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J Microbiol Biotechnol 17:1242–1248PubMedGoogle Scholar
  70. Löfgren SE, Milettib LC, Steindel M et al (2008) Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals. Exp Parasitol 118:197–202PubMedGoogle Scholar
  71. Maeder DL, Weiss RB, Dunn DM et al (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics 152:1299–1305PubMedGoogle Scholar
  72. Marsic D, Flaman JM, Ng JD (2008) New DNA polymerase from the hyperthermophilic marine archaeon Thermococcus thioreducens. Extremophiles 12:775–788PubMedGoogle Scholar
  73. Mayer AMS, Jacobson PB, Fenical W et al (1998) Pharmacological characterization of the pseudopterosins: novel anti-inflammatory natural products isolated from the Caribbean soft coral, Pseudopterogorgia elisabethae. Life Sci 62:PL401–PL407Google Scholar
  74. Melis A, Zhang L, Forestier M et al (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136PubMedGoogle Scholar
  75. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748PubMedGoogle Scholar
  76. Minoda A, Rei Sakagami R, Yagisawa F et al (2004) Improvement of ulture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671PubMedGoogle Scholar
  77. Mitta G, Vandenbulcke F, Roch P (2000) Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett 486:185–190PubMedGoogle Scholar
  78. Mocz G (2007) Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics. Mar Biotech 9:305–328Google Scholar
  79. Mueller P, Egorova K, Vorgias CE et al (2006) Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. Protein Exp Purif 47:672–681Google Scholar
  80. Nagasaki K, Shirai Y, Tomaru Y et al (2005) Algal viruses with distinct intraspecies host specificities include identical intein elements. Appl Environ Microbiol 71:3599–3607PubMedGoogle Scholar
  81. Nakagawa S, Takaki Y, Shimamura S et al (2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA 104:12146–12150PubMedGoogle Scholar
  82. Nelson KE, Clayton RA, Gill SR, et al (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329PubMedGoogle Scholar
  83. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238PubMedGoogle Scholar
  84. Ogata H, Raoult D, Claverie JM (2005) A new example of viral intein in Mimivirus. Virol J 2:8PubMedGoogle Scholar
  85. Osterhage C, Kaminsky R, Konig GM et al (2000) Ascosalipyrrolidonone A, an antimicrobial alkaloid from the obligate marine fungus Ascochyta salicorniae. J Org Chem 65:6412–6417PubMedGoogle Scholar
  86. Pace NR, Stahl DA, Lane DJ et al (1986) The analysis of natural microbial populations by ribosomal RNA. Adv Microbiol Ecol 9:1–55Google Scholar
  87. Perler FB (2002) InBase: the intein database. Nucleic Acids Res 30:383–384PubMedGoogle Scholar
  88. Polle JEW, Kanakagiri SD, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217:49–59PubMedGoogle Scholar
  89. Poulsen N, Chesley PM, Kröger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 42:1059–1065Google Scholar
  90. Prasher D, McCann RO, Cormier MJ (1985) Cloning and expression of the cDNA coding foe aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Com 126:1259–1268PubMedGoogle Scholar
  91. Quince C, Curtis TP, Sloan WT (2008) The rational exploration of microbial diversity. ISME J 2:997–1006PubMedGoogle Scholar
  92. Rabus R, Ruepp A, Frickey T et al (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902PubMedGoogle Scholar
  93. Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35Google Scholar
  94. Raoult D, Audic S, Robert C et al (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350PubMedGoogle Scholar
  95. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394PubMedGoogle Scholar
  96. Robertson DE, Chaplin JA, DeSantis G et al (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70:2429–2436PubMedGoogle Scholar
  97. Rodolfi L, Zittelli GC, Bassi N et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112PubMedGoogle Scholar
  98. Rondon MR, August PR, Bettermann AD et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547PubMedGoogle Scholar
  99. Rosenberg JN, Oyler GA, Wilkinson L et al (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436PubMedGoogle Scholar
  100. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845PubMedGoogle Scholar
  101. Ruby EG, Urbanowski M, Campbell J et al (2005) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci USA 102:3004–3009PubMedGoogle Scholar
  102. Rusch DB, Halpern AL, Sutton G et al (2007) The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77PubMedGoogle Scholar
  103. Sakurai H, Masukawa H (2007) Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Mar Biotechnol 9:128–145PubMedGoogle Scholar
  104. Sampaio FC, Torre P, Passos FML et al (2004) Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate. Biotechnol Prog 20:1641–1650PubMedGoogle Scholar
  105. Schenk P, Thomas-Hall S, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnerg Res 1:20–43Google Scholar
  106. Schirmer A, Gadkari R, Reeves CD et al (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849PubMedGoogle Scholar
  107. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Microbiol Biotechnol 65:363–372Google Scholar
  108. Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378PubMedGoogle Scholar
  109. Schneiker S, Martins SVA, Bartels D et al (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004PubMedGoogle Scholar
  110. Schütz K, Happe T, Troshina O et al (2004) Cyanobacterial H2 production – a comparative analysis. Planta 218:350–359PubMedGoogle Scholar
  111. Sennett SH (2001) Marine chemical ecology: application in marine biomedical prospecting. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Ratton, FL, pp 523–542Google Scholar
  112. Seshadri R, Kravitz SA, Smarr L et al (2007) CAMERA: a community resource for metagenomics. PLoS Biol 5:S18–S21Google Scholar
  113. She Q, Singh RK, Confalonieri F et al (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840PubMedGoogle Scholar
  114. Sheehan J, Dunahay T, Benemann J et al (1998) A look back at the US Department of Energy’s aquatic species program: Biodiesel from Algae. US Report NREL/TP-580-24190 Golden, US Department of Energy: 323Google Scholar
  115. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea. J Cell Comp Physiol 59:223–239PubMedGoogle Scholar
  116. Short JM, Marss B, Stein JL (1997) Screening methods for enzymes and enzyme kits. WO9704077 (A1)Google Scholar
  117. Short JM (1999) Protein activity screening of clones having DNA from uncultivated microorganisms. US5958672Google Scholar
  118. Six C, Thomas J-C, Garczarek L et al (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp: a comparative genomics study. Genome Biol 8:R259PubMedGoogle Scholar
  119. Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored ``rare biosphere’. Proc Natl Acad Sci USA 103:12115–12120PubMedGoogle Scholar
  120. Surzycki R, Cournac L, Peltier G et al (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci USA 104:17548–17553PubMedGoogle Scholar
  121. Suttle CA (2005) Viruses in the sea. Nature 437:356–361PubMedGoogle Scholar
  122. Suttle CA (2007) Marine viruses- major players in the global ecosystem. Nat Rev Microbiol 5:801–812PubMedGoogle Scholar
  123. Takami H, Nakasone K, Takaki Y et al (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331PubMedGoogle Scholar
  124. Tamagnini P, Axelsson R, Lindberg P et al (2002) Hydrogenases and hydrogen metabolism of Cyanobacteria. Microbiol Mol Biol Rev 66:1–20PubMedGoogle Scholar
  125. Teng C, Qin S, Liu J et al (2002) Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 14:497–500Google Scholar
  126. Tonon T, Harvey D, Qing R et al (2004a) Identification of a fatty acid Δ11-desaturase from the microalga Thalassiosira pseudonana. FEBS Lett 563:28–34PubMedGoogle Scholar
  127. Tonon T, Qing R, Harvey D et al (2005) Identification of a long-chain polyunsaturated fatty acid acyl-coenzyme A synthetase from the diatom Thalassiosira pseudonana. Plant Physiol 138:402–408PubMedGoogle Scholar
  128. Tonon T, Sayanova O, Michaelson LV et al (2004b) Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J 272:3401–3412Google Scholar
  129. Torsvik V (1980) Isolation of bacterial DNA from soil. Soil Biol Biochem 12:15–21Google Scholar
  130. Tsiroulnikov K, Rezai H, Bonch-Osmolovskaya E et al (2004) Hydrolysis of the amyloid prion protein and nonpathogenic meat and bone meal by anaerobic thermophilic prokaryotes and streptomyces subspecies. J Agric Food Chem 52:6353–6360PubMedGoogle Scholar
  131. Tsuda M, Kasai Y, Komatsu K et al (2004) Citrinadin A, a novel pentacyclic alkaloid from marine-derived fungus Penicillium citrinum. Org Lett 6:3087–3089PubMedGoogle Scholar
  132. Uchiyama T, Abe T, Ikemura T et al (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotech 23:88–93Google Scholar
  133. VanFossen AL, Lewis DL, Nichols JD et al (2008) Polysaccharide degradation and synthesis by extremely thermophilic anaerobes. Ann NY Acad Sci 1125:322–337PubMedGoogle Scholar
  134. Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedGoogle Scholar
  135. Vestergaard G, Aramayo R, Basta T et al (2008) Structure of the Acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses. J Virol 82:371–381PubMedGoogle Scholar
  136. Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic era. J Phycol 41:1077–1093Google Scholar
  137. Weiner D, Short JM, Hitchman T et al (2007) P450 enzymes, nucleic acids encoding them and methods of making and using them. US2007231820(A1)Google Scholar
  138. Wijffels RH (2008) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26:26–31PubMedGoogle Scholar
  139. Wilson WH, Schroeder DC, Allen MJ et al (2005) Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 309:1090–1092PubMedGoogle Scholar
  140. Yin Y, Fischer D (2008) Identification and investigation of ORFans in the viral world. BMC Genomics 9:24PubMedGoogle Scholar
  141. Yooseph S, Sutton G, Rusch DB et al (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 5:S56–S90Google Scholar
  142. Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Fact 4:8PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Joel Querellou
    • 1
  • Jean-Paul Cadoret
    • 2
  • Michael J. Allen
    • 3
  • Jonas Collén
    • 4
  1. 1.Ifremer, UMR 6197, Microbiology of Extreme Environments, Centre de Brest DEEP/LM2EPlouzaneFrance
  2. 2.Physiology and Biotechnology LaboratoryIfremerNantesFrance
  3. 3.PML ApplicationsPlymouth Marine LaboratoryPlymouthUK
  4. 4.Station Biologique de Roscoff, UMR 7139Roscoff cedexFrance

Personalised recommendations