Metazoan Complexity

  • Florian Raible
  • Patrick R. H. Steinmetz
Part of the Advances in Marine Genomics book series (AMGE, volume 1)


Evolution is often regarded as a process leading from simple ancestors to more complex descendants, a generalized view that has also impacted on different concepts of evolution. However, the study of new marine model systems, and the inclusion of new levels of analysis, challenge this paradigm, as they reveal that levels of complexity can diverge from the apparent organizational complexity of individual species. In this chapter, we analyze molecular genetic progress from different animal taxa, and how they help to determine the molecular changes associated with major evolutionary transitions, such as the transition to multicellularity or the origin of germ layers.


Bacterial Artificial Chromosome Sequence Animal Complexity Cell Type Diversity Dorsal Nerve Cord Extracellular Cadherin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Ferdinand Marlétaz and Benjamin Backfisch for critical reading of the manuscript, and Hanno Sandvik for help in locating the original lithograph reproduced in Fig. 5.1. Research in F.R.’s laboratory is supported by a start-up fund of the Max F. Perutz Laboratories.


  1. Abedin M, King N (2008) The premetazoan ancestry of cadherins. Science 319: 946–948PubMedCrossRefGoogle Scholar
  2. Aburomia R et al (2003) Functional evolution in the ancestral lineage of vertebrates or when genomic complexity was wagging its morphological tail. J Struct Funct Genomics 3: 45–52PubMedCrossRefGoogle Scholar
  3. Ackermann C (2002) Markierung der Zellinien im Embryo von Platynereis. In: Fachbereich biologie, ed. Mainz: Johannes Gutenberg-UniversitätGoogle Scholar
  4. Adamska M et al (2007a) Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLOS One 2: e1031Google Scholar
  5. Adamska M et al (2007b) The evolutionary origin of hedgehog proteins. Curr Biol 17: R836–R837PubMedCrossRefGoogle Scholar
  6. Adell T et al (2003) Isolation and characterization of two T-box genes from sponges, the phylogenetically oldest metazoan taxon. Dev Genes Evol 213: 421–434PubMedCrossRefGoogle Scholar
  7. Adell T, Müller WEG. (2004) Isolation and characterization of five Fox (Forkhead) genes from the sponge Suberites domuncula. Gene 334: 35–46PubMedCrossRefGoogle Scholar
  8. Adell T, Müller WEG. (2005) Expression pattern of the Brachyury and Tbx2 homologues from the sponge Suberites domuncula. Biol Cell 97: 641–650PubMedCrossRefGoogle Scholar
  9. Aguinaldo AM et al (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387: 489–493PubMedCrossRefGoogle Scholar
  10. Amerongen HM, Peteya DJ (1980) Ultrastructural study of two kinds of muscle in sea anemones: the existence of fast and slow muscles. J Morphol 166: 145–154CrossRefGoogle Scholar
  11. Arendt D (2004) Comparative aspects of gastrulation. In: Stern C (ed) Gastrulation, edn. Cold Spring Harbor Laboratory Press, Cold SPring Harbor, New YorkGoogle Scholar
  12. Arendt D (2005) Genes and homology in nervous system evolution: comparing gene functions, expression patterns, and cell type molecular fingerprints. Theory Biosci 124: 185–197PubMedGoogle Scholar
  13. Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9: 868–882PubMedCrossRefGoogle Scholar
  14. Arendt D, Nübler-Jung K (1997) Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech Dev 61: 7–21PubMedCrossRefGoogle Scholar
  15. Bell G (1997) Size and complexity among multicellular organisms. Biol J Linnean Soc 60: 345–363CrossRefGoogle Scholar
  16. Bijlsma MF et al (2004) Hedgehog: an unusual signal transducer. Bioessays 26: 387–394PubMedCrossRefGoogle Scholar
  17. Bonner JT. (1988) The evolution of complexity. Princeton University Press, Princeton, NJGoogle Scholar
  18. Borchiellini C et al (2004) Molecular phylogeny of demospongiae: implications for classification and scenarios of character evolution. Mol Phylogenet Evol 32: 823–837PubMedCrossRefGoogle Scholar
  19. Borchiellini C et al (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14: 171–179CrossRefGoogle Scholar
  20. Boue S et al (2003) Alternative splicing and evolution. Bioessays 25: 1031–1034PubMedCrossRefGoogle Scholar
  21. Brett D et al (2002) Alternative splicing and genome complexity. Nat Genet 30: 29–30PubMedCrossRefGoogle Scholar
  22. Brites D et al (2008) The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Mol Biol Evol 25: 1429–1439PubMedCrossRefGoogle Scholar
  23. Brooke NM et al (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392: 920–922PubMedCrossRefGoogle Scholar
  24. Brusca RC, Brusca GJ. (2003) Invertebrates. Sinauer Associates. Sunderland, Massachusetts.
  25. Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. San Francisco: FreemanGoogle Scholar
  26. Burton PM (2007) Inisghts from diploblasts; the evolution of mesoderm and muscle. J Exp Zool (Mol Dev Evol) 308B: 1–10CrossRefGoogle Scholar
  27. Bütschli O. (1883–1887) Klassen und Ordnungen des Thier-Reichs. Winter, C. F., LeipzigGoogle Scholar
  28. Calarco JA et al (2007) Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev 21: 2963–2975PubMedCrossRefGoogle Scholar
  29. Callaerts P et al (1997) PAX-6 in development and evolution. Ann Rev Neurosci 20: 483–532PubMedCrossRefGoogle Scholar
  30. Cañestro C et al (2007) Evolutionary developmental biology and genomics. Nat Rev Genet 8: 932–942PubMedCrossRefGoogle Scholar
  31. Carr M et al (2008) Molecular phylogeny of choanoflagellates, the sister group to Metazoa. PNAS 105: 16641–16646PubMedCrossRefGoogle Scholar
  32. Chimpanzee Sequencing and Analysis C (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87CrossRefGoogle Scholar
  33. Chourrout D et al (2006) Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442: 684–687PubMedCrossRefGoogle Scholar
  34. Clark H (1866) Note on the infusoria flagellate and the spongiae ciliatae. Am J Sci 1: 113–114Google Scholar
  35. Clark H (1868) On the Spongiae ciliatae as Infusoria flagellata, or observations on the structure, animality and relationship of Leucosolenia botryoides Bowerbank. Ann Mag Nat Hist 4: 133–142, 188–215, 250–264Google Scholar
  36. Claverie JM (2001) Gene number. What if there are only 30,000 human genes? Science 291: 1255–1257PubMedCrossRefGoogle Scholar
  37. Collins AG (1998) Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proc Natl Acad Sci USA 95: 15458–15463PubMedCrossRefGoogle Scholar
  38. Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15: 418–432CrossRefGoogle Scholar
  39. da Silva FB et al (2007) Phylogenetic position of Placozoa based on large subunit (LSU) and small subunit (SSU) rRNA genes. Genet Mol Biol 30: 127–132Google Scholar
  40. de Jong DM et al (2006) Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a ‘radiate’ animal, the anthozoan cnidarian Acropora millepora. Dev Biol 298: 632–643PubMedCrossRefGoogle Scholar
  41. De Robertis EM, Sasai Y (1996) A common groundplan for dorsoventral patterning in Bilateria. Nature 380: 37–40PubMedCrossRefGoogle Scholar
  42. Dellaporta SL et al (2006) Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci USA 103: 8751–8756PubMedCrossRefGoogle Scholar
  43. Delsuc F et al (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439: 965–968PubMedCrossRefGoogle Scholar
  44. Delsuc F et al (2008) Additional molecular support for the new chordate phylogeny. Genesis 46: 592–604PubMedCrossRefGoogle Scholar
  45. Denes AS et al (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129: 277–288PubMedCrossRefGoogle Scholar
  46. Derelle R et al (2007) Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol Dev 9: 212–219PubMedCrossRefGoogle Scholar
  47. Dominguez M et al (2004) Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat Genet 36: 31–39PubMedCrossRefGoogle Scholar
  48. Ereskovsky AV, Dondua AK (2006) The problem of germ layers in sponges (Porifera) and some issues concerning early metazoan evolution. Zoologischer Anzeiger 245: 65–76CrossRefGoogle Scholar
  49. Finnerty JR, Martindale MQ (1999) Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria. Evol Dev 1: 16–23Google Scholar
  50. Finnerty JR et al (2004) Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 304: 1335–1337PubMedCrossRefGoogle Scholar
  51. Fioroni P (1992) Allgemeine und vergleichende Embryologie. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  52. Fritzenwanker JH et al (2004) Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 275: 389–402PubMedCrossRefGoogle Scholar
  53. Galle S et al (2005) The homeobox gene Msx in development and transdifferentiation of jellyfish striated muscle. Int J Dev Biol 49: 961–967PubMedCrossRefGoogle Scholar
  54. Garcia-Fernàndez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6: 881–892PubMedCrossRefGoogle Scholar
  55. Garcia-Fernàndez J, Bentio-Gutiérrez E (2009) It’s a long way from amphioxus: descendants of the earliest chordate. Bioessays 31: 665–675PubMedCrossRefGoogle Scholar
  56. Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the amphioxus hox gene-cluster. Nature 370: 563–566PubMedCrossRefGoogle Scholar
  57. Gerberding M et al (2002) Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates. Development 129: 5789–5801PubMedCrossRefGoogle Scholar
  58. Gregory TR (2005) Genome size evolution in animals. In: Gregory TR (ed) The evolution of the genome, 1st edn. Elsevier, San DiegoGoogle Scholar
  59. Grell KG (1971a) Embryonalentwicklung bei Trichoplax adherens F.E. Schulze. Naturwiss 58: 507CrossRefGoogle Scholar
  60. Grell KG (1971b) Trichoplax adherens: F.E. Schulze und die Entstehung der Metazoen. Naturwiss Rundschau 24: 160–161Google Scholar
  61. Grell KG (1972) Eibildung und Furchung von Trichoplax adherens F.E. Schulze (Placozoa). Z Morph Tiere 73: 297–314CrossRefGoogle Scholar
  62. Grell KG, Ruthman A (1991) Placozoa, Porifera, Cnidaria and Ctenophora. In Harrisson FW, Westfall JA (eds) Microscopic anatomy of invertebrates. Wiley-Liss, New YorkGoogle Scholar
  63. Grimson A et al (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455: 1193–1197PubMedCrossRefGoogle Scholar
  64. Grunz H (2004) The vertebrate organizer. Springer, Berlin HeidelbergGoogle Scholar
  65. Haeckel E (1874) Die Gastraea-Theorie, die phylogenetische Classification des Thierreiches und die Homologie der Keimblätter. Jena Z. Naturwiss 8: 1–55Google Scholar
  66. Haeckel E (1903) Anthropogenie oder Entwickelungsgeschichte des Menschen. Keimes- und Stammes-Geschichte. Wilhelm Engelmann, LeipzigGoogle Scholar
  67. Haen KM et al (2007) Glass sponges and bilaterian animals share derived mitochondrial genomic features: a common ancestry or parallel evolution? Mol Biol Evol 24: 1518–1527PubMedCrossRefGoogle Scholar
  68. Hahn MW, Wray GA (2002) The g-value paradox. Evol Dev 4: 73–75PubMedCrossRefGoogle Scholar
  69. Halanych KM (2004) The new view of animal phylogeny. Ann Rev Ecol Evol Sys 35: 229–256CrossRefGoogle Scholar
  70. Halanych KM et al (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267: 1641–1643PubMedCrossRefGoogle Scholar
  71. Halder G et al (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267: 1788–1792PubMedCrossRefGoogle Scholar
  72. Hattori D et al (2008) Dscam-mediated cell recognition regulates neural circuit formation. Annu Rev Cell Dev Biol 24: 597–620PubMedCrossRefGoogle Scholar
  73. Hayward DC et al (2002) Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proc Natl Acad Sci USA 99: 8106–8111PubMedCrossRefGoogle Scholar
  74. Heimberg AM et al (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA 105: 2946–2950PubMedCrossRefGoogle Scholar
  75. Hibino T et al (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300: 349–365PubMedCrossRefGoogle Scholar
  76. Hirose Y et al (2004) Single cell lineage and regionalization of cell populations during Medaka neurulation. Development 131: 2553–2563PubMedCrossRefGoogle Scholar
  77. Holland LZ (2000) Body-plan evolution in the Bilateria: early antero-posterior patterning and the deuterostome-protostome dichotomy. Curr Opin Genet Dev 10: 434–442PubMedCrossRefGoogle Scholar
  78. Holland LZ et al (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18: 1100–1111PubMedCrossRefGoogle Scholar
  79. Hotta K et al (2008) Brachyury-downstream gene sets in a chordate, Ciona intestinalis: integrating notochord specification, morphogenesis and chordate evolution. Evol Dev 10: 37–51PubMedCrossRefGoogle Scholar
  80. Howard-Ashby M et al (2006) High regulatory gene use in sea urchin embryogenesis: Implications for bilaterian development and evolution. Dev Biol 300: 27–34Google Scholar
  81. Imai KS et al (2006) Regulatory blueprint for a chordate embryo. Science 312: 1183–1187PubMedCrossRefGoogle Scholar
  82. Imai KS et al (2002) Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129: 1729–1738PubMedGoogle Scholar
  83. Jager M et al (2005) Expansion of the SOX gene family predated the emergence of the Bilateria. Mol Phylogenet Evol 39: 468–477CrossRefGoogle Scholar
  84. Jaillon O et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431: 946–957PubMedCrossRefGoogle Scholar
  85. Jakob W et al (2004) The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 214: 170–175PubMedCrossRefGoogle Scholar
  86. Jekely G, Arendt D (2007) Cellular resolution expression profiling using confocal detection of NBT/BCIP precipitate by reflection microscopy. Biotechniques 42: 751–755PubMedCrossRefGoogle Scholar
  87. Kamm K et al (2006) Axial patterning and diversification in the cnidaria predate the Hox system. Curr Biol 16: 920–926PubMedCrossRefGoogle Scholar
  88. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294: 1030–1038PubMedCrossRefGoogle Scholar
  89. Keller R et al (2000) Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 355: 897–922PubMedCrossRefGoogle Scholar
  90. Keller RE (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev Biol 42: 222–241PubMedCrossRefGoogle Scholar
  91. King N et al (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301: 361–363PubMedCrossRefGoogle Scholar
  92. King N et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451: 783–788PubMedCrossRefGoogle Scholar
  93. Kortschak RD et al (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 13: 2190–2195PubMedCrossRefGoogle Scholar
  94. Kozmik Z (2005) Pax genes in eye development and evolution. Curr Opin Genet Dev 15: 430–438PubMedCrossRefGoogle Scholar
  95. Kozmik Z et al (2003) Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 5: 773–785PubMedCrossRefGoogle Scholar
  96. Kraus Y et al (2007) The blastoporal organiser of a sea anemone. Curr Biol 17: R874–R876Google Scholar
  97. Kusserow A et al (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433: 156–160PubMedCrossRefGoogle Scholar
  98. Lang BF et al (2002) The closest unicellular relatives of animals. Curr Biol 12: 1773–1778PubMedCrossRefGoogle Scholar
  99. Larroux C et al (2007) The NK homeobox gene cluster predates the origin of Hox genes. Curr Biol 17: 706–710PubMedCrossRefGoogle Scholar
  100. Larroux C et al (2006) Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol Dev 8: 150–173PubMedCrossRefGoogle Scholar
  101. Larroux C et al (2008) Genesis and expansions of metazoan transcription factor classes. Mol Biol Evol 25: 980–996PubMedCrossRefGoogle Scholar
  102. Leadbeater BSC (1983) Life-history and ultrastructure of a new marine species of Proterospongia (Choanoflagellida). J Mar Biol Assoc UK 63: 135–160CrossRefGoogle Scholar
  103. Lee PN et al (2007) Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. Dev Biol 310: 169–186PubMedCrossRefGoogle Scholar
  104. Lemaire P (2006) Developmental biology. How many ways to make a chordate? Science 312: 1145–1156Google Scholar
  105. Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424: 147–151PubMedCrossRefGoogle Scholar
  106. Leys SP (2004) Gastrulation in sponges. In Stern CD (ed) Gastrulation. Cold Spring Harbor Laboratory Press, Cold Sping Harbor, New YorkGoogle Scholar
  107. Leys SP, Degnan BM (2001) Cytological basis of photoresponsive behavior in a sponge larva. Biol Bull 201: 323–338PubMedCrossRefGoogle Scholar
  108. Leys SP, Ereskovsky AV (2006) Embryogenesis and larval differentiation in sponges. Can J Zool 84: 262–287CrossRefGoogle Scholar
  109. Maniatis T, Tasic B (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418: 236–243PubMedCrossRefGoogle Scholar
  110. Manning G et al (2008) The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. PNAS 105: 9674–9679PubMedCrossRefGoogle Scholar
  111. Manuel M, Le Parco Y (2000) Homeobox gene diversification in the calcareous sponge, Sycon raphanus. Mol Phylogenet Evol 17: 97–107PubMedCrossRefGoogle Scholar
  112. Manuel M et al (2004) Comparative analysis of Brachyury T-domains, with the characterization of two new sponge sequences, from a hexactinellid and a calcisponge. Gene 340: 291–301PubMedCrossRefGoogle Scholar
  113. Marlow HQ et al (2009) Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 69: 235–254PubMedCrossRefGoogle Scholar
  114. Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6: 917–927PubMedCrossRefGoogle Scholar
  115. Martindale MQ et al (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131: 2463–2474PubMedCrossRefGoogle Scholar
  116. Martinelli C, Spring J (2003) Distinct expression patterns of the two T-box homologues Brachyury and Tbx2/3 in the placozoan Trichoplax adhaerens. Dev Genes Evol 213: 492–499PubMedCrossRefGoogle Scholar
  117. Martinelli C, Spring J (2004) Expression pattern of the homeobox gene Not in the basal metazoan Trichoplax adhaerens. Gene Expr Patterns 4: 443–447PubMedCrossRefGoogle Scholar
  118. Masuda-Nakagawa LM et al (2000) The HOX-like gene Cnox2-Pc is expressed at the anterior region in all life cycle stages of the jellyfish Podocoryne carnea. Dev Genes Evol 210: 151–156PubMedCrossRefGoogle Scholar
  119. Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210: 1526–1547PubMedCrossRefGoogle Scholar
  120. Matus DQ et al (2008) The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol 313: 501–518PubMedCrossRefGoogle Scholar
  121. Matus DQ et al (2006a) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci USA 103: 11195–11200PubMedCrossRefGoogle Scholar
  122. Matus DQ et al (2006b) Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Curr Biol 16: 499–505PubMedCrossRefGoogle Scholar
  123. Matus DQ et al (2007) FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Dev Genes Evol 217: 137–148PubMedCrossRefGoogle Scholar
  124. Mazza ME et al (2007) Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. J Exp Zoolog B Mol Dev Evol 308: 494–506CrossRefGoogle Scholar
  125. McGinnis W et al (1984) A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37: 403–408PubMedCrossRefGoogle Scholar
  126. McGinnis W and Krumlauf R. (1992) Homeobox genes and axial patterning. Cell 68: 283–302PubMedCrossRefGoogle Scholar
  127. Miller DJ, Ball EE (2005) Animal evolution: the enigmatic phylum placozoa revisited. Curr Biol 15: R26–R28Google Scholar
  128. Miller DJ, and Ball EE (2008) Cryptic complexity captured: the Nematostella genome reveals its secrets. Trends Genet 24: 1–4PubMedCrossRefGoogle Scholar
  129. Miller DJ et al (2005) Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet 21: 536–539PubMedCrossRefGoogle Scholar
  130. Monteiro AS et al (2006) A low diversity of ANTP class homeobox genes in Placozoa. Evol Dev 8: 174–182PubMedCrossRefGoogle Scholar
  131. Moroz LL et al (2006) Neuronal transcriptome of aplysia: neuronal compartments and circuitry. Cell 127: 1453–1467PubMedCrossRefGoogle Scholar
  132. Mukherjee K, Bürglin TR (2007) Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol 65: 137–153PubMedCrossRefGoogle Scholar
  133. Nedelcu AM, Tan C (2007) Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev Genes Evol 217: 801–806PubMedCrossRefGoogle Scholar
  134. Nielsen C (2001) Animal Evolution. Interrelationships of the Living Phyla. Oxford University press, OxfordGoogle Scholar
  135. Nielsen C (2004) Trochophora Larvae: Cell-Lineages, Ciliary Bands, and Body Regions. 1. Annelida and Mollusca. J Exp Zool (Mol Dev Evol) 302B: 35–68CrossRefGoogle Scholar
  136. Nilsson DE et al (2005) Advanced optics in a jellyfish eye. Nature 435: 201–205PubMedCrossRefGoogle Scholar
  137. Pang K et al (2004) The ancestral role of COE genes may have been in chemoreception: evidence from the development of the sea anemone, Nematostella vectensis (Phylum Cnidaria; Class Anthozoa). Dev Genes Evol 214: 134–138PubMedCrossRefGoogle Scholar
  138. Pavlopoulos A, Averof M (2005) Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis. Proc Natl Acad Sci USA 102: 7888–7893PubMedCrossRefGoogle Scholar
  139. Pedersen RA (1971) DNA content, ribosomal gene multiplicity, and cell size in fish. J. Exp. Zool. 177: 65–78PubMedCrossRefGoogle Scholar
  140. Pennacchio LA et al (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444: 499–502PubMedCrossRefGoogle Scholar
  141. Peterson KJ, Sperling EA (2007) Poriferan ANTP genes: primitively simple or secondarily reduced? Evol Dev 9: 405–408PubMedCrossRefGoogle Scholar
  142. Philippe H et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19: 706–712PubMedCrossRefGoogle Scholar
  143. Piatigorsky J, Kozmik Z (2004) Cubozoan jellyfish: an Evo/Devo model for eyes and other sensory systems. Int J Dev Biol 48: 719–729PubMedCrossRefGoogle Scholar
  144. Pincus D et al (2008) Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. PNAS 105: 9680–9684PubMedCrossRefGoogle Scholar
  145. Prpic NM, Telford MJ (2008) Expression of homothorax and extradenticle mRNA in the legs of the crustacean Parhyale hawaiensis: evidence for a reversal of gene expression regulation in the pancrustacean lineage. Dev Genes Evol 218: 333–339PubMedCrossRefGoogle Scholar
  146. Prud’homme B et al (2007) Emerging principles of regulatory evolution. Proc Natl Acad Sci USA 104: 8605–8612PubMedCrossRefGoogle Scholar
  147. Putnam NH et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453: 1064–1071PubMedCrossRefGoogle Scholar
  148. Putnam NH et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317: 86–94PubMedCrossRefGoogle Scholar
  149. Raible F et al (2006) Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol 300: 461–475PubMedCrossRefGoogle Scholar
  150. Raible F et al (2005) Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310: 1325–1326PubMedCrossRefGoogle Scholar
  151. Rast JP et al (2006) Genomic insights into the immune system of the sea urchin. Science 314: 952–956PubMedCrossRefGoogle Scholar
  152. Remane A (1950) Die Entstehung der Metamerie der Wirbellosen. Vh Dt Zool Ges Mainz: 16–23Google Scholar
  153. Rentzsch F et al (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: Implications for the evolution of axial patterning. Dev Biol 296: 375–387PubMedCrossRefGoogle Scholar
  154. Rentzsch F et al (2008) FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 315:1761–1769Google Scholar
  155. Ryan JF et al (2006) The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol 7: R64Google Scholar
  156. Ryan JF et al (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLOS One 2: e153Google Scholar
  157. Sakaraya O et al (2007) A post-synaptic scaffold at the origin of the animal kingdom. PLoS One 2(6): e506Google Scholar
  158. Samanta MP et al (2006) The transcriptome of the sea urchin embryo. Science 314: 960–962PubMedCrossRefGoogle Scholar
  159. Satou Y, Satoh N (2006) Gene regulatory networks for the development and evolution of the chordate heart. Genes Dev 20: 2634–2638PubMedCrossRefGoogle Scholar
  160. Schierwater B et al (2008) The early ANTP gene repertoire: Insights from the placozoan genome. PLOS One 3: e2457Google Scholar
  161. Schmucker D et al (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101: 671–684PubMedCrossRefGoogle Scholar
  162. Schuchert P (1993) Trichoplax adhaerens (Phylum Placozoa) has cells that react with antibodies against the neuropetide RFamide. Acta Zoologica (Stockholm). 74: 115–117CrossRefGoogle Scholar
  163. Schuchert P et al (1993) Life stage specific expression of a myosin heavy chain in the hydrozoan Podocoryne carnea. Differentiation 54: 11–18PubMedGoogle Scholar
  164. Sea Urchin Genome Sequencing C et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314: 941–952CrossRefGoogle Scholar
  165. Sedgwick A (1884) On the origin of metameric segmentation and some other morphological questions. Q J Microsc Sci 24: 43–82Google Scholar
  166. Segawa Y et al (2006) Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Proc Natl Acad Sci USA 103: 12021–12026PubMedCrossRefGoogle Scholar
  167. Seipel K, Schmid V (2005) Evolution of striated muscle: Jellyfish and the origin of triploblasty. Dev Biol 282: 14–26PubMedCrossRefGoogle Scholar
  168. Sempere LF et al (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zoolog B Mol Dev Evol 306: 575–588CrossRefGoogle Scholar
  169. Shalchian-Tabrizi K et al (2008) Multigene phylogeny of choanozoa and the origin of animals. PLOS One 3: e2098Google Scholar
  170. Shankland M, Seaver EC (2000) Evolution of the bilaterian body plan: what have we learned from annelids? Proc Natl Acad Sci USA 97: 4434–4437PubMedCrossRefGoogle Scholar
  171. Shoguchi E et al (2008) Genome-wide network of regulatory genes for construction of a chordate embryo. Dev Biol 316: 498–509PubMedCrossRefGoogle Scholar
  172. Short S, Holland LZ (2008) The evolution of alternative splicing in the Pax family: the view from the Basal chordate amphioxus. J Mol Evol 66: 605–620PubMedCrossRefGoogle Scholar
  173. Siewing R (1985) Lehrbuch der Zoologie. Systematik. Gustav Fischer Verlag, Stuttgart, New YorkGoogle Scholar
  174. Signorovitch AY et al (2007) Comparative genomics of large mitochondria in placozoans. PLoS Genet 3: e13Google Scholar
  175. Signorovitch AY et al (2005) Molecular signatures for sex in the Placozoa. Proc Natl Acad Sci USA 102: 15518–15522PubMedCrossRefGoogle Scholar
  176. Simionato E et al (2007) Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 7: 33PubMedCrossRefGoogle Scholar
  177. Skogh C et al (2006) Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora. J Morphol 267: 1391–1405CrossRefGoogle Scholar
  178. Snell EA et al (2006) An unusual choanoflagellate protein released by Hedgehog autocatalytic processing. Proc R Soc B 273: 401–407PubMedCrossRefGoogle Scholar
  179. Sperling EA, Peterson KJ. (2007) Poriferan paraphyly and its implication for precambrian paleobiology. In Vickers-Rich P, Komarower P (eds) The rise and fall of the ediacaran biota. Geological Society, LondonGoogle Scholar
  180. Spring J et al (2002) Conservation of Brachyury, Mef2, and Snail in the myogenic lineage of jellyfish: a connection to the mesoderm of bilateria. Dev Biol 244: 372–384PubMedCrossRefGoogle Scholar
  181. Srivastava M et al (2008) The Trichoplax genome and the nature of placozoans. Nature 454: 955–960PubMedCrossRefGoogle Scholar
  182. St-Onge L et al (1997) Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 387: 406–409PubMedCrossRefGoogle Scholar
  183. Steinmetz PR et al (2007) Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation. Proc Natl Acad Sci USA 104: 2727–2732Google Scholar
  184. Stephenson TA (1928) The British Sea Anemones. Dulau & Co, LondonGoogle Scholar
  185. Stephenson TA (1935) The British Sea Anemones. Dulau & Co, LondonGoogle Scholar
  186. Stierwald M et al (2004) The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes: development and eye regeneration. Dev Biol 274: 70–81PubMedCrossRefGoogle Scholar
  187. Suga H et al (2008) Evolution and functional diversity of jellyfish opsins. Curr Biol 18: 51–55PubMedCrossRefGoogle Scholar
  188. Syed T, Schierwater B (2002) Trichoplax adherens: discovered as a missing link, forgotten as a hydrozoan, re-discovered as a key to metazoan evolution. Vie Milieu 52: 177–187Google Scholar
  189. Tassy O et al (2006) A quantitative approach to the study of cell shapes and interactions during early chordate embryogenesis. Curr Biol 16: 345–358PubMedCrossRefGoogle Scholar
  190. Tautz D (2004) Segmentation. Dev Cell 7: 301–312PubMedCrossRefGoogle Scholar
  191. Taylor JS, Raes J (2004) Duplication and divergence: The evolution of new genes and old ideas. Ann Rev Genet 38: 615–643PubMedCrossRefGoogle Scholar
  192. Technau U (2001) Brachyury, the blastopore and the evolution of the mesoderm. BioEssays 23: 788–794PubMedCrossRefGoogle Scholar
  193. Technau U et al (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21: 633–639PubMedCrossRefGoogle Scholar
  194. Technau U, Scholz CB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47: 47Google Scholar
  195. Tessmar-Raible K et al (2005) Fluorescent two color whole-mount in situ hybridization in Platynereis dumerilii (Polychaeta, Annelida), an emerging marine molecular model for evolution and development. BioTechniques 39:460–464Google Scholar
  196. Valentine JW (2000) Two genomic paths to the evolution of complexity in bodyplans. Paleobiology 26: 513–519CrossRefGoogle Scholar
  197. Valentine JW et al (1994) Morphological complexity increase in metazoans. Paleobiology 20: 131–142Google Scholar
  198. Vogel C, Chothia C (2006) Protein family expansions and biological complexity. PLOS Comput Biol 2: e48Google Scholar
  199. Voigt O et al (2004) Placozoa – no longer a phylum of one. Curr Biol 14: R944–R945Google Scholar
  200. Wenderoth H (1986) Transepithelial cytophagy by Trichoplax adherens F.E. Schulze (Placozoa) feeding on yeast. Zeitschrift für Naturforschung. Section C, Biosciences 41: 343–347Google Scholar
  201. Woo K, Fraser S (1995) Order and coherence in the fate map of the zebrafish nervous system. Development 121: 2595–2609PubMedGoogle Scholar
  202. Woolfe A et al (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3: e7Google Scholar
  203. Yanze N et al (2001) Conservation of Hox/ParaHox-related genes in the early development of a cnidarian. Dev Biol 236: 89–98PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Max F. Perutz Laboratories, Campus Vienna BiocenterUniversity of ViennaViennaAustria
  2. 2.Department for Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria

Personalised recommendations