Skip to main content

Cholesterol at the Endoplasmic Reticulum: Roles of the Sigma-1 Receptor Chaperone and Implications thereof in Human Diseases

  • Chapter
  • First Online:
Book cover Cholesterol Binding and Cholesterol Transport Proteins:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 51))

Abstract

Despite substantial data elucidating the roles of cholesterol in lipid rafts at the plasma membrane, the roles of cholesterol and related lipids in lipid raft microdomains at the level of subcellular membrane, such as the endoplasmic reticulum (ER) membrane, remain less understood. Growing evidence, however, begins to unveil the importance of cholesterol and lipids on the lipid raft at the ER membrane. A few ER proteins including the sigma-1 receptor chaperone were identified at lipid raft-like microdomains of the ER membrane. The sigma-1 receptor, which is highly expressed at a subdomain of ER membrane directly apposing mitochondria and known as the mitochondria-associated ER membrane or MAM, has been shown to associate with steroids as well as cholesterol. The sigma-1 receptor has been implicated in ER lipid metabolisms/transports, lipid raft reconstitution at the plasma membrane, trophic factor signalling, cellular differentiation, and cellular protection against β-amyloid-induced neurotoxicity. Recent studies on sigma-1 receptor chaperones and other ER proteins clearly suggest that cholesterol, in concert with those ER proteins, may regulate several important functions of the ER including folding, degradation, compartmentalization, and segregation of ER proteins, and the biosynthesis of sphingolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ER:

endoplasmic reticulum

MAM:

mitochondria-associated ER membrane

SREBP:

sterol regulatory element binding protein

PHB:

prohibitin domain-containing

PrP:

prion protein

erlin:

ER lipid raft protein

IP3 receptors:

inositol 1,4,5-trisphosphate receptors

PtSer:

phosphatidylserine

PtEt:

phosphatidylethanolamine

SBDL:

sterol-binding domain-like

IAF:

iodo-azido fenpropimorph

NGF:

nerve growth factor

EGF:

epidermal growth factor

BDNF:

brain-derived neurotrophic factor

MAPK:

mitogen-activated protein kinase

NMDA:

N-methyl-D-aspartate

Hsp:

heat shock protein

BiP:

immunoglobulin binding protein

References

  • Achison, M, Boylan, MT., Hupp, TR. and Spruce, BA., 2007, HIF-1alpha contributes to tumour-selective killing by the sigma receptor antagonist rimcazole. Oncogene 26: 1137–1146.

    Article  CAS  PubMed  Google Scholar 

  • Alonso, G, Phan, V, Guillemain, I, Saunier, M, Legrand, A, Anoal, M and Maurice, T, 2000, Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience 97: 155–170.

    Article  CAS  PubMed  Google Scholar 

  • Aydar, E, Palmer, CP., Klyachko, VA. and Jackson. M.B., 2002, The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 34: 399–410.

    Article  CAS  PubMed  Google Scholar 

  • Bae, S, Seong, J and Paik, Y, 2001, Cholesterol biosynthesis from lanosterol: molecular cloning, chromosomal localization, functional expression and liver-specific gene regulation of rat sterol delta8-isomerase, a cholesterogenic enzyme with multiple functions. Biochem J 353: 689–699.

    Article  CAS  PubMed  Google Scholar 

  • Barres, BA. and Smith, SJ., 2001, Neurobiology. Cholesterol–making or breaking the synapse. Science 294: 1296–1297.

    Article  CAS  PubMed  Google Scholar 

  • Bengoechea-Alonso, MT. and Ericsson, J, 2007, SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 19: 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Bermack, JE. and Debonnel, G, 2007, Effects of OPC-14523, a combined sigma and 5-HT1a ligand, on pre- and post-synaptic 5-HT1a receptors. J Psychopharmacol 21: 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Bionda, C, Portoukalian, J, Schmitt, D, Rodriguez-Lafrasse, C and Ardail, D, 2004, Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 382: 527–533.

    Article  CAS  PubMed  Google Scholar 

  • Browman, DT., Resek, ME., Zajchowski, LD. and Robbins, SM., 2006, Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci 119: 3149–3160.

    Article  CAS  PubMed  Google Scholar 

  • Brown, MS. and Goldstein, JL., 1997, The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331–340.

    Article  CAS  PubMed  Google Scholar 

  • Campana, V, Sarnataro, D, Fasano, C, Casanova, P, Paladino, S and Zurzolo, C, 2006, Detergent-resistant membrane domains but not the proteasome are involved in the misfolding of a PrP mutant retained in the endoplasmic reticulum. J Cell Sci 119: 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L, Dai, XN. and Sokabe, M, 2006, Chronic administration of dehydroepiandrosterone sulfate (DHEAS) primes for facilitated induction of long-term potentiation via sigma 1 (sigma1) receptor: optical imaging study in rat hippocampal slices. Neuropharmacology 50: 380–392.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y, Hajipour, AR., Sievert, MK., Arbabian, M and Ruoho, AE., 2007, Characterization of the cocaine binding site on the sigma-1 receptor. Biochemistry 46: 3532–3542.

    Article  CAS  PubMed  Google Scholar 

  • Duchen, MR., Verkhratsky, A and Muallem, S, 2008, Mitochondria and calcium in health and disease. Cell Calcium 44: 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Dun, Y, Thangaraju, M, Prasad, P, Ganapathy, V and Smith, SB., 2007, Prevention of excitotoxicity in primary retinal ganglion cells by (+)-pentazocine, a sigma receptor-1 specific ligand. Invest Ophthalmol Vis Sci 48: 4785–4794.

    Article  PubMed  Google Scholar 

  • Fontanilla, D, Hajipour, AR., Pal, A, Chu, UB., Arbabian, M and Ruoho, AE., 2008, Probing the steroid binding domain-like I (SBDLI) of the sigma-1 receptor binding site using N-substituted photoaffinity labels. Biochemistry 47: 7205–7217.

    Article  CAS  PubMed  Google Scholar 

  • Fontanilla, D, Johannessen, M, Hajipour, AR., Cozzi, NV., Jackson, MB. and Ruoho, AE., 2009, The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323: 934–937.

    Article  CAS  PubMed  Google Scholar 

  • Ganapathy, ME., Prasad, PD., Huang, W, Seth, P, Leibach, FH. and Ganapathy, V, 1999, Molecular and ligand-binding characterization of the sigma-receptor in the Jurkat human T lymphocyte cell line. J Pharmacol Exp Ther 289: 251–260.

    CAS  PubMed  Google Scholar 

  • Gebreselassie, D and Bowen, WD. 2004, Sigma-2 receptors are specifically localized to lipid rafts in rat liver membranes. Eur J Pharmacol 493:19–28.

    Article  CAS  PubMed  Google Scholar 

  • Goyagi, T, Goto, S, Bhardwaj, A, Dawson, VL., Hurn, PD. and Kirsch, JR., 2001, Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. Stroke 32: 1613–1620.

    CAS  PubMed  Google Scholar 

  • Hajnoczky, G and Hoek, JB., 2007, Cell signalling. Mitochondrial longevity pathways. Science 315: 607–609.

    Article  PubMed  Google Scholar 

  • Hanner, M, Moebius, FF., Flandorfer, A, Knaus, HG., Striessnig, J, Kempner, E and Glossmann, H, 1996, Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci USA 93: 8072–8077.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T, Rizzuto, R, Hajnoczky, G and Su, TP., 2009, MAM: more than just a housekeeper. Trends Cell Biol 19: 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T and Su, TP., 2003a, Intracellular dynamics of sigma-1 receptors (sigma(1) binding sites) in NG108-15 cells. J Pharmacol Exp Ther 306: 726–733.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T and Su, TP., 2003b, Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther 306: 718–725.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T and Su, TP., 2004a, Sigma-1 receptor ligands: potential in the treatment of neuropsychiatric disorders. CNS Drugs 18: 269–284.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T and Su, TP., 2004b, Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proc Natl Acad Sci U S A 101: 14949–14954.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T and Su, TP., 2005, The potential role of sigma-1 receptors in lipid transport and lipid raft reconstitution in the brain: implication for drug abuse. Life Sci 77: 612–1624.

    Article  Google Scholar 

  • Hayashi, T and Su, TP., 2007, Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regulate Ca(2+) Signalling and Cell Survival. Cell 131: 596–610.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T and Su, TP., 2008, An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma 1 receptor ligand. Expert Opin Ther Targets 12: 5–58.

    Article  Google Scholar 

  • Hoegg, MB., Browman, DT., Resek, ME. and Robbins, SM., 2009, Distinct regions within the erlins are required for oligomerization and association with high molecular weight complexes. J Biol Chem 284: 7766–7776.

    Article  CAS  PubMed  Google Scholar 

  • Hyman, SE., Malenka, RC.and Nestler, EJ., 2006, Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29: 565–598.

    Article  CAS  PubMed  Google Scholar 

  • Ikonen, E and Vainio, S, 2005, Lipid microdomains and insulin resistance: is there a connection? Sci STKE 2005:pe3.

    Google Scholar 

  • Jiang, G, Mysona, B, Dun, Y, Gnana-Prakasam, JP., Pabla, N, Li, W, Dong, Z, Ganapathy, V and Smith, SB., 2006, Expression, subcellular localization, and regulation of sigma receptor in retinal muller cells. Invest Ophthalmol Vis Sci 47: 5576–5582.

    Article  PubMed  Google Scholar 

  • Johannessen, MA., Ramachandran, S, Riemer, L, Ramos-Serrano, A, Ruoho, AE. and Jackson, MB., 2009, Voltage-Gated Sodium Channel Modulation by Sigma Receptors in Cardiac Myocytes and Heterologous Systems. Am J Physiol Cell Physiol 296: C1049–C1057.

    Article  CAS  PubMed  Google Scholar 

  • Lajoie, P and Nabi, IR., 2007, Regulation of raft-dependent endocytosis. J Cell Mol Med 11: 644–653.

    Article  CAS  PubMed  Google Scholar 

  • Lavoie, HA. and King, SR., 2009, Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med (Maywood) 234: 880–907.

    Google Scholar 

  • Liu, Y, Chen, GD., Lerner, MR., Brackett, DJ. and Matsumoto, RR., 2005, Cocaine up-regulates Fra-2 and sigma-1 receptor gene and protein expression in brain regions involved in addiction and reward. J Pharmacol Exp Ther 314: 770–779.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y and Matsumoto, RR., 2008, Alterations in fos-related antigen 2 and sigma1 receptor gene and protein expression are associated with the development of cocaine-induced behavioral sensitization: time course and regional distribution studies. J Pharmacol Exp Ther 327: 87–195.

    Google Scholar 

  • Malorni, W, Giammarioli, AM., Garofalo, T and Sorice, M, 2007, Dynamics of lipid raft components during lymphocyte apoptosis: the paradigmatic role of GD3. Apoptosis 12: 941–949.

    Article  CAS  PubMed  Google Scholar 

  • Marrazzo, A, Caraci, F, Salinaro, ET., Su, TP., Copani, A and Ronsisvalle, G, 2005, Neuroprotective effects of sigma-1 receptor agonists against beta-amyloid-induced toxicity. Neuroreport 16: 1223–1226.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Fardon, R, Maurice, T, Aujla, H, Bowen, WD. and Weiss, F, 2007, Differential effects of sigma1 receptor blockade on self-administration and conditioned reinstatement motivated by cocaine vs natural reward. Neuropsychopharmacology 32: 1967–1973.

    Article  CAS  PubMed  Google Scholar 

  • Martina, M, Turcotte, ME., Halman, S and Bergeron, R, 2007, The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 578: 143–157.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto, RR., Liu, Y, Lerner, M, Howard, EW. and Brackett, DJ., 2003, Sigma receptors: potential medications development target for anti-cocaine agents. Eur J Pharmacol 469: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Maurice, T, 2004, Neurosteroids and sigma1 receptors, biochemical and behavioral relevance. Pharmacopsychiatry 37 Suppl 3: S171–S182.

    Article  CAS  PubMed  Google Scholar 

  • Maurice, T, Martin-Fardon, R, Romieu, P and Matsumoto, RR., 2002, Sigma(1) (sigma(1)) receptor antagonists represent a new strategy against cocaine addiction and toxicity. Neurosci Biobehav Rev 26: 499–527.

    Article  CAS  PubMed  Google Scholar 

  • Mei, J and Pasternak, GW., 2007, Modulation of brainstem opiate analgesia in the rat by sigma 1 receptors: a microinjection study. J Pharmacol Exp Ther 322: 1278–1285.

    Article  CAS  PubMed  Google Scholar 

  • Miljan, EA., Meuillet, EJ., Mania-Farnell, B, George, D, Yamamoto, H, Simon, HG. and Bremer, EG., 2002, Interaction of the extracellular domain of the epidermal growth factor receptor with gangliosides. J Biol Chem 277: 10108–10113.

    Article  CAS  PubMed  Google Scholar 

  • Moebius, FF., Reiter, RJ., Hanner, M and Glossmann, H, 1997, High affinity of sigma 1-binding sites for sterol isomerization inhibitors: evidence for a pharmacological relationship with the yeast sterol C8-C7 isomerase. Br J Pharmacol 121: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa, M, Matsuno, K and Mita, S, 1998, Activation of sigma1 receptor subtype leads to neuroprotection in the rat primary neuronal cultures. Neurochem Int 32: 337–343.

    Article  CAS  PubMed  Google Scholar 

  • Pal, A, Chu, UB., Ramachandran, S, Grawoig, D, Guo, LW., Hajipour, AR. and Ruoho, AE., 2008, Juxtaposition of the steroid binding domain-like I and II regions constitutes a ligand binding site in the sigma-1 receptor. J Biol Chem. 283: 19646–19656.

    Article  CAS  PubMed  Google Scholar 

  • Pal, A, Hajipour, AR., Fontanilla, D, Ramachandran, S, Chu, UB., Mavlyutov, T and Ruoho, AE., 2007, Identification of regions of the sigma-1 receptor ligand binding site using a novel photoprobe. Mol Pharmacol 72: 921–933.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, CP., Mahen, R, Schnell, E, Djamgoz, MB. and Aydar, E, 2007, Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines. Cancer Res 67: 11166–11175.

    Article  CAS  PubMed  Google Scholar 

  • Pike, LJ., 2003, Lipid rafts: bringing order to chaos. J Lipid Res 44: 655–667.

    Article  CAS  PubMed  Google Scholar 

  • Pregelj, P, 2008, Involvement of cholesterol in the pathogenesis of Alzheimer’s disease: role of statins. Psychiatr Danub 20:162–167.

    PubMed  Google Scholar 

  • Renaudo, A, L’Hoste, S, Guizouarn, H, Borgese, F and Soriani, O 2007, Cancer cell cycle modulated by a functional coupling between sigma-1 receptors and Cl- channels. J Biol Chem 282: 2259–2267.

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto, R, Pinton, P, Brini, M, Chiesa, A, Filippin, L and Pozzan, T, 1999, Mitochondria as biosensors of calcium microdomains. Cell Calcium 26: 193–199.

    Article  CAS  PubMed  Google Scholar 

  • Rusinol, AE., Chan, EY. and Vance, JE., 1993, Movement of apolipoprotein B into the lumen of microsomes from hepatocytes is disrupted in membranes enriched in phosphatidylmonomethylethanolamine. J Biol Chem 268: 25168–25175.

    CAS  PubMed  Google Scholar 

  • Rusinol, AE., Cui, Z, Chen, MH. and Vance, JE., 1994, A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269: 27494–27502.

    CAS  PubMed  Google Scholar 

  • Sabeti, J and Gruol, DL., 2008, Emergence of NMDAR-independent long-term potentiation at hippocampal CA1 synapses following early adolescent exposure to chronic intermittent ethanol: role for sigma-receptors. Hippocampus 18: 148–168.

    Article  CAS  PubMed  Google Scholar 

  • Sarnataro, D, Campana, V, Paladino, S, Stornaiuolo, M, Nitsch, L and Zurzolo, C, 2004, PrP(C) association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol Biol Cell 15: 4031–4042.

    Article  CAS  PubMed  Google Scholar 

  • Seth, P, Ganapathy, ME., Conway, SJ., Bridges, CD., Smith, SB., Casellas, P and Ganapathy, V, 2001, Expression pattern of the type 1 sigma receptor in the brain and identity of critical anionic amino acid residues in the ligand-binding domain of the receptor. Biochim Biophys Acta 1540: 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K and Ikonen, E, 1997, Functional rafts in cell membranes. Nature 387: 569–572.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K and Toomre, D, 2000, Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 1–39.

    Article  Google Scholar 

  • Smith, SB., Duplantier, J, Dun, Y, Mysona, B, Roon, P, Martin, PM. and Ganapathy, V, 2008, In vivo protection against retinal neurodegeneration by sigma receptor 1 ligand (+)-pentazocine. Invest Ophthalmol Vis Sci 49: 4154–4161.

    Article  PubMed  Google Scholar 

  • Spruce, BA., Campbell, LA., McTavish, N, Cooper, MA., Appleyard, MV., O’Neill, M, Howie, J, Samson, J, Watt, S, Murray, K, McLean, D, Leslie, NR., Safrany, ST., Ferguson, MJ., Peters, JA., Prescott, AR., Box, G, Hayes, A, Nutley, B, Raynaud, F, Downes, CP., Lambert, JJ., Thompson, AM. and Eccles, S, 2004, Small molecule antagonists of the sigma-1 receptor cause selective release of the death program in tumor and self-reliant cells and inhibit tumor growth in vitro and in vivo. Cancer Res 64: 4875–4886.

    Article  CAS  PubMed  Google Scholar 

  • Stefanski, R, Justinova, Z, Hayashi, T, Takebayashi, M, Goldberg, SR. and Su, TP., 2004, Sigma1 receptor upregulation after chronic methamphetamine self-administration in rats: a study with yoked controls. Psychopharmacology (Berl) 175: 68–75.

    Article  CAS  Google Scholar 

  • Su, TP. and Hayashi, T 2003, Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Med Chem 10:2073–2080.

    Article  CAS  PubMed  Google Scholar 

  • Su, TP., London, ED. and Jaffe, JH., 1988, Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 240: 219–221.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, S, Kiyosue, K, Hazama, S, Ogura, A, Kashihara, M, Hara, T, Koshimizu, H and Kojima, M, 2007, Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development. J Neurosci 27: 6417–6427.

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi, M, Hayashi, T and Su, TP., 2002, Nerve growth factor-induced neurite sprouting in PC12 cells involves sigma-1 receptors: implications for antidepressants. J Pharmacol Exp Ther 303: 1227–1237.

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi, M, Hayashi, T and Su, TP., 2004a, A perspective on the new mechanism of antidepressants: neuritogenesis through sigma-1 receptors. Pharmacopsychiatry 37 Suppl 3: S208–213.

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi, M, Hayashi, T and Su, TP., 2004b, Sigma-1 receptors potentiate epidermal growth factor signalling towards neuritogenesis in PC12 cells: potential relation to lipid raft reconstitution. Synapse 53: 90–103.

    Article  CAS  PubMed  Google Scholar 

  • Tchedre, KT. and Yorio, T, 2008, Sigma-1 receptors protect RGC-5 cells from apoptosis by regulating intracellular calcium, Bax levels, and caspase-3 activation. Invest Ophthalmol Vis Sci. 49: 2577–2588.

    Article  PubMed  Google Scholar 

  • van Meer, G, 2000, Cellular organelles: how lipids get there, and back. Trends Cell Biol 10: 550–552.

    Article  PubMed  Google Scholar 

  • van Meer, G and van Genderen, IL., 1994, Intracellular lipid distribution, transport, and sorting. A cell biologist’s need for physicochemical information. Subcell Biochem 23: 1–24.

    PubMed  Google Scholar 

  • Vance, JE., 1990, Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265: 7248–7256.

    CAS  PubMed  Google Scholar 

  • Vilner, BJ., John, CS. and Bowen, WD., 1995, Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res 55: 408–413.

    CAS  PubMed  Google Scholar 

  • Voelker, DR., 2000, Interorganelle transport of aminoglycerophospholipids. Biochim Biophys Acta 1486: 97–107.

    CAS  PubMed  Google Scholar 

  • Volz, HP. and Stoll, KD., 2004, Clinical trials with sigma ligands. Pharmacopsychiatry 37 Suppl 3: S214–220.

    Article  CAS  PubMed  Google Scholar 

  • Yagasaki, Y, Numakawa, T, Kumamaru, E, Hayashi, T, Su, TP. and Kunugi, H, 2006, Chronic antidepressants potentiate via sigma-1 receptors the brain-derived neurotrophic factor-induced signalling for glutamate release. J Biol Chem 281: 12941–12949.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, H, Miura, R, Yamamoto, T, Shinohara, K, Watanabe, M, Okuyama, S, Nakazato, A and Nukada, T, 1999, Amino acid residues in the transmembrane domain of the type 1 sigma receptor critical for ligand binding. FEBS Lett 445: 19–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by Intramural Research Program, NIDA, NIH, DHHS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teruo Hayashi or Tsung-Ping Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hayashi, T., Su, TP. (2010). Cholesterol at the Endoplasmic Reticulum: Roles of the Sigma-1 Receptor Chaperone and Implications thereof in Human Diseases. In: Harris, J. (eds) Cholesterol Binding and Cholesterol Transport Proteins:. Subcellular Biochemistry, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8622-8_13

Download citation

Publish with us

Policies and ethics