Skip to main content

Introduction to Bipolar Transistor Modeling

  • Chapter
  • 2620 Accesses

Abstract

This chapter reviews the operation and modeling of bipolar junction transistors (BJTs) and heterojunction bipolar transistors (HBTs). The emphasis is on fundamental device physics and modeling; subsequent chapters give specific details of two advanced models, Mextram and HiCuM. We first give a synopsis of basic BJT device behavior and modeling, and then introduce the Gummel integral charge control relationship, which elegantly and physically encapsulates the core description of BJT operation. The development of approximations to this key relationship, which leads to the widely known and used SGP (SPICE Gummel-Poon) model, are detailed, as are modifications necessary for modeling III-V HBT devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bardeen, J., Brattain, W.H.: The transistor, a semi-conductor triode. Phys. Rev. 84(2), 230–231 (1948)

    Article  Google Scholar 

  2. Betser, Y., Ritter, D.: Reduction of the base-collector capacitance in InP/GaInAs heterojunction bipolar transistors due to electron velocity modulation. IEEE Trans. Electron Devices 46(4), 628–633 (1999)

    Article  Google Scholar 

  3. Davis, W.F., Ida, R.T.: Statistical IC simulation based on independent wafer extracted process parameters and experimental designs. In: IEEE Bipolar Circuits and Technology Meeting (BCTM), pp. 262–265 (1989)

    Google Scholar 

  4. de Graaff, H.C., Klaassen, F.M.: Compact Transistor Modeling for Circuit Design. Springer, Berlin (1990)

    Book  Google Scholar 

  5. Early, J.M.: Effects of space-charge layer widening in junction transistors. Proc. Inst. Radio Eng. (IRE) 40(11), 1401–1406 (1952)

    Google Scholar 

  6. Fossum, J.G., Veeraraghavan, S.: Partitioned-charge-based modeling of bipolar transistors for non-quasi-static circuit simulation. IEEE Electron Device Lett. 7(12), 652–654 (1986)

    Article  Google Scholar 

  7. Getreu, I.: Modeling the Bipolar Transistor. http://www.lulu.com

  8. Gummel, H.K.: A charge control relation for bipolar transistors. Bell Syst. Tech. J. 49(1), 115–120 (1970)

    Google Scholar 

  9. Gummel, H.K., Poon, H.C.: An integral charge control model of bipolar transistors. Bell Syst. Tech. J. 49(5), 164–174 (1970)

    Google Scholar 

  10. HiCuM group: HiCuM web site. http://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_start.html

  11. Iwamoto, M., Root, D.E., Scott, J.B., Cognata, A., Asbeck, P.M., Hughes, B., D’Avanzo, D.C.: Large-signal HBT model with improved collector transit time formulation for GaAs and InP technologies. In: Digest IEEE Microwave Symposium (MTT-S), pp. 635–638 (2003)

    Google Scholar 

  12. Jeong, H., Fossum, J.G.: A charge-based large-signal bipolar transistor model for device and circuit simulation. IEEE Trans. Electron Devices 34(1), 124–131 (1989)

    Article  Google Scholar 

  13. Kirk, C.T.: A theory of transistor cutoff frequency f T falloff at high current densities. IRE Trans. Electron Devices 9(2), 809–814 (1962)

    Article  MathSciNet  Google Scholar 

  14. Koolen, M.C.A.M., Aerts, J.C.J.: The influence of non-ideal base current on 1/f noise behavior of bipolar transistors. In: IEEE Bipolar Circuits and Technology Meeting (BCTM), pp. 232–235 (1990)

    Google Scholar 

  15. Kroemer, H.: Theory of a wide-gap emitter for transistors. Proc. Inst. Radio Eng. (IRE) 45(11), 1535–1537 (1957)

    Google Scholar 

  16. Kroemer, H.: Heterostructure bipolar transistors and integrated circuits. Proc. IEEE 70(1), 13–25 (1982)

    Article  Google Scholar 

  17. Kull, G.G., Nagel, L.W., Lee, S.W., Lloyd, P., Prendergast, E.J., Dirks, H.: A unified circuit model for bipolar transistors including quasi-saturation effects. IEEE Trans. Electron Devices 32(6), 1103–1113 (1985)

    Article  Google Scholar 

  18. Liu, W.: Handbook of III-V Heterojunction Bipolar Transistors. Wiley, New York (1998)

    Google Scholar 

  19. Massobrio, G., Antognetti, P.: Semiconductor Device Modeling with SPICE, 2nd edn. McGraw-Hill, New York (1983)

    Google Scholar 

  20. Mextram Group: Mextram website. http://mextram.ewi.tudelft.nl/

  21. McAndrew, C.C., Nagel, L.W.: SPICE Early modeling. In: IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp. 144–147 (1994)

    Google Scholar 

  22. McAndrew, C.C., Seitchik, J.A., Bowers, D.F., Dunn, M., Foisy, M., Getreu, I., McSwain, M., Moinian, S., Parker, J., Roulston, D.J., Schroter, M., van Wijnen, P., Wagner, L.W.: VBIC95, the vertical bipolar inter-company model. IEEE J. Solid-State Circuits 31(10), 1476–1483 (1996)

    Article  Google Scholar 

  23. Nagel, L.W.: SPICE2: A computer program to simulate semiconductor circuits. Memo ERL-M520 University of California, Berkeley (1975)

    Google Scholar 

  24. Roulston, D.J.: Bipolar Semiconductor Devices. McGraw-Hill, New York (1990)

    Google Scholar 

  25. Sah, C.T.: Fundamentals of Solid-State Electronics. World Scientific, Singapore (1991)

    Book  Google Scholar 

  26. Samelis, A.: Modeling the bias dependence of the base-collector capacitance of power heterojunction bipolar transistors. IEEE Trans. Microw. Theory Tech. (MTT) 47(5), 642–645 (1999)

    Article  Google Scholar 

  27. Shockley, W.: The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949)

    Google Scholar 

  28. Shockley, W.: Circuit element utilizing semiconductive material. U.S. Patent 2,569,347 (1951)

    Google Scholar 

  29. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley, New York (2006)

    Book  Google Scholar 

  30. Taur, Y., Ning, T.: Fundamentals of Modern VLSI Devices. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  31. Tsividis, Y., McAndrew, C.: Operation and Modeling of the MOS Transistor, 3rd edn. Oxford University Press, London (2010)

    Google Scholar 

  32. Turgeon, L.J., Mathews, J.R.: A bipolar transistor model of quasi-saturation for use in computer aided design (CAD): In: IEDM Tech. Digest, pp. 394–397 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin C. McAndrew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McAndrew, C.C., Tutt, M. (2010). Introduction to Bipolar Transistor Modeling. In: Gildenblat, G. (eds) Compact Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8614-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8614-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8613-6

  • Online ISBN: 978-90-481-8614-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics