Skip to main content

Compact Modeling of Double-Gate and Nanowire MOSFETs

  • Chapter
Book cover Compact Modeling
  • 2579 Accesses

Abstract

This chapter reviews recent developments on compact modeling of double-gate and nanowire MOSFETs. It starts with the core, long-channel drain current models of double-gate and nanowire MOSFETs, derived from the analytic solutions of 1-D Poisson and current continuity equations in Cartesian and cylindrical coordinates, respectively. Explicit and continuous solutions to the implicit parameters in both models have been developed. The short-channel models based on the scale length approach to the boundary value problems of 2-D Poisson’s equation in subthreshold are then described, followed by charge and capacitance models for both double-gate and nanowire MOSFETs. A popular, surface-potential based current expression in the literature is examined before concluding the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pao, H.C., Sah, C.T.: Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid-State Electron. 9, 927–937 (1966)

    Article  Google Scholar 

  2. Brews, J.R.: A charge sheet model of the MOSFET. Solid-State Electron. 21(2), 345–355 (1978)

    Article  Google Scholar 

  3. Gildenblat, G., Li, X., Wu, W., Wang, H., Jha, A., van Langevelde, R., Smit, G.D.J., Scholten, A.J., Klaassen, D.B.M.: PSP: An advanced surface-potential-based MOSFET model for circuit simulation. IEEE Trans. Electron Devices ED-53, 1979–1993 (2006)

    Article  Google Scholar 

  4. Taur, Y.: An analytical solution to a double-gate MOSFET with undoped body. IEEE Electron Device Lett. 21(5), 245–247 (2000)

    Article  Google Scholar 

  5. Taur, Y., Liang, X., Wang, W., Lu, H.: A continuous, analytic drain-current model for DG MOSFETs. IEEE Electron Device Lett. 25(2), 107–109 (2004)

    Article  Google Scholar 

  6. Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices, 2nd edn. Cambridge Univ. Press, Cambridge (2009)

    Google Scholar 

  7. Lu, X., Lu, W.-Y., Taur, Y.: Effect of body doping on double-gate MOSFET characteristics. Semicond. Sci. Technol. 22, 252835 (2008) (6pp)

    Google Scholar 

  8. Jimenez, D., Iniguez, B., Sune, J., Marsal, L.F., Pallares, J., Roig, J., Flores, D.: Continuous analytic I-V model for surrounding-gate MOSFETs. IEEE Electron Device Lett. 25(8), 571–573 (2004)

    Article  Google Scholar 

  9. Yu, B., Lu, H., Liu, M., Taur, Y.: Explicit continuous models for double-gate and surrounding-gate MOSFETs. IEEE Trans. Electron Devices 54(10), 2715–2722 (2007)

    Article  Google Scholar 

  10. Chen, T.L., Gildenblat, G.: Analytical approximation for the MOSFET surface potential. Solid State Electron. 45(2), 335–339 (2001)

    Article  Google Scholar 

  11. Liang, X., Taur, Y.: A 2-D analytical solution for SCEs in DG MOSFETs. IEEE Trans. Electron Devices 51(9), 1385–1391 (2004)

    Article  Google Scholar 

  12. Oh, S.-H., Monroe, D., Hergenrother, J.M.: Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Electron Device Lett. 9, 445–447 (2000)

    Google Scholar 

  13. Frank, D.J., Taur, Y., Wong, H.-S.P.: Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Device Lett. 19, 385–387 (1998)

    Article  Google Scholar 

  14. Yu, B., Wang, L., Yuan, Y., Asbeck, P.M., Taur, Y.: Scaling of nanowire transistors. IEEE Trans. Electron Devices 55, 2846–2858 (2008)

    Article  Google Scholar 

  15. Yu, B., Yuan, Y., Song, J., Taur, Y.: A two-dimensional analytical solution for short-channel effects in nanowire MOSFETs. IEEE Trans. Electron Devices 56, 2357–2362 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ward, D., Dutton, R.: A charge-oriented model for MOS transistor capacitances. IEEE J. Solid-State Circuits SC-13(5), 703–708 (1978)

    Article  Google Scholar 

  17. Lu, H., Taur, Y.: An analytic potential model for symmetric and asymmetric DG MOSFETs. IEEE Trans. Electron Devices 53(5), 1161–1168 (2006)

    Article  Google Scholar 

  18. Yu, B., Lu, W.-Y., Lu, H., Taur, Y.: Analytic charge model for surrounding-gate MOSFETs. IEEE Trans. Electron Devices 54(3), 492–496 (2007)

    Article  Google Scholar 

  19. Taur, Y., Richards, P.L.: Parametric amplification and oscillation at 36 GHz using a point-contact Josephson junction. J. Appl. Phys. 48(3), 1321–1326 (1977)

    Article  Google Scholar 

  20. Taur, Y., Kerr, A.R.: Low-noise Josephson mixers at 115 GHz using recyclable point contacts. Appl. Phys. Lett. 32(11), 775–777 (1978)

    Article  Google Scholar 

  21. Dunga, M.V., Lin, C.-H., Xi, X., Lu, D.D., Niknejad, A.M., Hu, C.: Modeling advanced FET technology in a compact model. IEEE Trans. Electron Devices 53(9), 1971–1978 (2006)

    Article  Google Scholar 

  22. Smit, G.D.J., Scholten, A.J., Curatola, G., van Langevelde, R., Gildenblat, G., Klaassen, D.B.M.: PSP-based scalable compact FinFET model. In: NTSI-Nanotech 2007, vol. 3, pp. 520–525 (2007)

    Google Scholar 

  23. Sallese, J.-M., Krummenacher, F., Pregaldiny, F., Lallement, C., Roy, A., Enz, C.: A design oriented charge-based current model for symmetric DG MOSFET and its correlation with the EKV formalism. Solid-State Electron. 49(3), 485–489 (2005)

    Article  Google Scholar 

  24. Lu, H., Yu, B., Taur, Y.: A unified charge model for symmetric double-gate and surrounding-gate MOSFETs. Solid-State Electron. 52(1), 67–72 (2008)

    Article  Google Scholar 

  25. Song, J., Yu, B., Yuan, Y., Taur, Y.: A review on compact modeling of multiple-Gate MOSFETs. IEEE Trans. Circuits Syst. I 56(8), 1858–1869 (2009)

    Article  MathSciNet  Google Scholar 

  26. Dessai, G., Dey, A., Gildenblat, G., Smit, G.D.J.: Symmetric linearization method for double-gate and surrounding-gate MOSFET model. Solid-State Electron. 53(5), 548–556 (2009)

    Article  Google Scholar 

  27. Ortiz-Conde, A., Garcia-Sanchez, F.J., Muci, J., Malobabic, S., Liou, J.J.: A review of core compact models for undoped double-gate SOI MOSFETs. IEEE Trans. Electron Devices 54(1), 131–140 (2007)

    Article  Google Scholar 

  28. Song, J., Yu, B., Xiong, W., Hsu, C.H., Cleavelin, C.R., Ma, M., Patruno, P., Taur, Y.: Experimental hardware calibrated compact models for 50 nm n-channel FinFETs. In: Conf. SOI, 2007 IEEE, pp. 131–132 (2007)

    Google Scholar 

  29. Yu, B., Song, J., Yuan, Y., Taur, Y.: A unified analytic drain current model for multiple-gate MOSFETs. IEEE Trans. Electron Devices 55(8), 2157–2163 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Taur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Taur, Y. (2010). Compact Modeling of Double-Gate and Nanowire MOSFETs. In: Gildenblat, G. (eds) Compact Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8614-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8614-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8613-6

  • Online ISBN: 978-90-481-8614-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics