Locust Habitat Monitoring and Risk Assessment Using Remote Sensing and GIS Technologies

  • Alexandre V. Latchininsky
  • Ramesh Sivanpillai
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 5)


Locust outbreaks occur on all continents except Antarctica and can affect the livelihoods of one in 10 people on Earth. To prevent economic and environmental losses, locust breeding areas should be periodically monitored, and an early detection-early response strategy should be in place. Traditional, ground survey methods are inefficient to adequately address the large spatial scale of the locust problem. Remote Sensing and the associated geospatial technologies can provide timely data to assess the risk of impending locust outbreaks. This information could be used for targeted preventive management actions in the locust breeding areas. Remotely sensed data are used for monitoring habitats of certain species such as the Desert, Migratory and Australian Plague locusts. However, the vast potential of this technology remains untapped for other locusts. This chapter provides a review of remote sensing and GIS concepts, types of data collected by various remote sensing satellites, and applications of geospatial tools for locust habitat monitoring and risk assessment.


Global Position System Normalize Difference Vegetation Index Global Position System Receiver Geographic Information System Technology Desert Locust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babah Ebbe, M. O. (2008). Biogéographie du Criquet pèlerin, Schistocerca gregaria Forskål, 1775 :identification, caractérisation et originalité d’un foyer grégarigène en Mauritanie centrale [Biogeography of the Desert locust Schistocerca gregaria Forskål, 1775: identification, characteristics and originality of the gregarization area in central Mauritania]. Unpublished doctoral dissertation, Ecole Pratique des Hautes Etudes, Paris, France.Google Scholar
  2. Belayneh, Y. T. (2005). Acridid pest management in the developing world: A challenge to the rural population, a dilemma to the international community. Journal of Orthoptera Research, 14, 187–195.CrossRefGoogle Scholar
  3. Brader, L., Djibo, H., Faye, F. G., Ghaout, S., Lazar, M., Nguala, P. M., & Babah, M. A. O. (2006). Towards a more effective response to Desert locusts and their impacts on food security, livelihood and poverty. Independent Multilateral Evaluation of the 2003–2005 Desert locust campaign. FAO. Rome, Italy.Google Scholar
  4. Bryceson, K. P. (1984). Discrimination of small areas of vegetation growth after localised rain in semiarid environments using Landsat (pp. 541–550). Proceedings of the 3rd Australian Remote Sensing Conference. 180 A.V. LATCHININSKY & R. SIVANPILLAIGoogle Scholar
  5. Bryceson, K. P. (1989). The use of Landsat MSS data to determine the distribution of locust eggbeds in the Riverina region of New South Wales, Australia. International Journal of Remote Sensing, 10, 1749–1762.CrossRefGoogle Scholar
  6. Bryceson, K. P. (1990). Digitally Processed Satellite Data as a tool in detecting potential Australian Plague locust outbreak areas. Journal of Environmental Management, 30, 191–207.CrossRefGoogle Scholar
  7. Bryceson, K. P. (1991). Likely locust infestation areas in western New South Wales, Australia, located by satellite. Geocarta International, 6, 21–37.CrossRefGoogle Scholar
  8. Bryceson, K. P. (1993). The Australian Plague Locust Commission's weather satellite receiving system. In S. A. Corey, D. J. Dall, & W. M. Milne (Eds.), Pest control and sustainable agriculture (pp. 440–443). Melbourne: CSIRO.Google Scholar
  9. Bryceson, K. P., & Cannon, R. (1990). Acquisition and use of low-cost meteorological satellite data in the Australian Plague Locust Commission. Computers and Electronics in Agriculture, 5, 47–64.CrossRefGoogle Scholar
  10. Bryceson, K. P., Hunter, D. M., & Hamilton, J. G. (1993). Use of remotely sensed data in the Australian Plague Locust Commission. In S. A. Corey, D. J. Dall, & W. M. Milne (Eds.), Pest control and sustainable agriculture (pp. 435–439). Melbourne: CSIRO.Google Scholar
  11. Bryceson, K. P., & Wright, D. E. (1986). An analysis of the 1984 locust plague in Australia using multitemporal Landsat multispectral data and a simulation model of locust development. Agriculture, Ecosystems and Environment, 16, 87–102.CrossRefGoogle Scholar
  12. Campbell, J. C. (2006). Introduction to remote sensing (4th ed.). New York: Guilford Press.Google Scholar
  13. Ceccato, P., Cressman, K., Giannini, A., & Trzaska, S. (2007). The desert locust upsurge in West Africa (2003–2005): Information on the desert locust early warning system and the prospects for seasonal climate forecasting. International Journal of Pest Management, 53, 7–13.CrossRefGoogle Scholar
  14. Centre for Overseas Pest Research. (1982). The locust and grasshopper agricultural manual. London: COPR.Google Scholar
  15. Chapman, J. W., Reynolds, D. R., & Smith A. D. (2003). Vertical-looking radar: A new tool for monitoring high-altitude insect migration. BioScience, 53, 503–511.CrossRefGoogle Scholar
  16. Cherlet, M., & Di Gregorio, A. (1993). Calibration and integrated modelling of remote sensing data for Desert locust habitat monitoring (RSC Series 64). Rome, Italy: FAO.Google Scholar
  17. Cherlet, M., Di Gregorio, A., & Hielkema, J. U. (1990). Remote sensing applications for Desert locust monitoring and forecasting. OEPP/EPPO Bulletin, 21, 633–692.Google Scholar
  18. Cigliano, M. M., Kemp, W. P., & Kalaris, T. (1995). Spatiotemporal characteristics of rangeland grasshopper (Orthoptera: Acrididae) regional outbreaks in Montana. Journal of Orthoptera Research, 4, 111–126.CrossRefGoogle Scholar
  19. Cressman, K. (1997). A geographic information system for Desert locust forecasting. In S. Krall, R. Peveling, & D. Ba Diallo (Eds.), New Strategies in locust control (pp. 27–35). Basel, Switzerland: Birkhauser Verlag.Google Scholar
  20. Despland, E., Rosenberg, J., & Simpson, S. J. (2004). Landscape structure and locust swarming: A satellite’s eye view. Ecography, 27, 381–391.CrossRefGoogle Scholar
  21. Deveson, E. D., Drake, V. A., Hunter, D. M., Walker, P. W., & Wang, H. K. (2005). Evidence from traditional and new technologies for northward migrations of Australian plague locusts (Chorticetes terminifera) (Walker) (Orthoptera: Acrididae) to western Queensland. Australian Ecology, 30, 928–943.CrossRefGoogle Scholar
  22. Deveson, T. (2001). Decision support for locust management using GIS to integrate multiple information sources (pp. 361–374). Proceedings of the Geospatial Information & Agriculture Conference, Sydney, July 17–19 2001. NSW Agriculture, 361–374.Google Scholar
  23. Deveson, E. D., & Hunter, D. M. (2000). Decision support for Australian locust management using wireless transfer of field survey data and automatic internet weather data collection. In R. Laurini & T. Tanzi (Eds.), Proceedings of the 2nd International Symposium on Telegeoprocessing (TeleGeo 2000) (pp. 103–110). Sophia-Antipolis, France: Nice.Google Scholar
  24. Deveson, T., & Hunter, D. M. (2002). The operation of a GIS-based decision support system for Australian locust management. Entomologia Sinica, 9, 1–12.Google Scholar
  25. Dottavio, C. L. & Williams, L. D. (1983). Satellite technology: An improved means for monitoring forest insect defoliation. Journal of Forestry, 81, 30–34.Google Scholar
  26. Drake, V. A., Gregg, P. C., Harman, I. T., Wang, H.-K., Deveson, E. D., Hunter, D. M., & Rochester, W. A. (2001). Characterizing insect migration systems in inland Australlia with novel and traditional methodologies. In I. P. Woiwood, D. R. Reynolds, & C. D. Thomas (Eds.), Insect movement: LOCUST REMOTE SENSING AND GIS 181 mechanisms and consequences (pp. 207–234), Proceedings of the Royal Entomological Society's 20th Symposium. London: CABI Publishing.Google Scholar
  27. Drake, V. A., Harman, I. T., & Hunter, D. M. (1998). Monitoring locust migratory flight with radar: An Australian study. Second Urban Environment Symposium & 13th Conference on Biometeorology and Aerobiology, 313–316.Google Scholar
  28. Dreiser, U. (1994). Mapping of desert locust habitats in Africa using Landsat Thematic Mapper data. GeoJournal, 32, 55–60.CrossRefGoogle Scholar
  29. Food and Agricultural Organization. (1989 May 2–5). Desert locust research priorities. Report of the FAO Research Advisory Panel, FAO, Rome, Italy.Google Scholar
  30. Food and Agricultural Organization. (2001). Desert Locust Guidelines. Vol. 1. Biology and behavior. FAO, Rome, Italy.Google Scholar
  31. Franc, A. (2007). Impact des transformations mésologiques sur la dynamique des populations et la grégarisation du criquet nomade dans le bassin de la Sofia (Madagascar) [Impacts of the environmental alterations in the Sofia basin (Madagascar) on the population dynamics and the gregarization of the Red locust]. Unpublished doctoral dissertation, University Montpellier III – Paul Valéry, Montpellier, France.Google Scholar
  32. Ghaout, S. (1990). Contribution à l’étude des ressources trophiques de Schistocerca gregaria (Forsk.) (Orthoptera , Acrididae) solitaire en Mauritanie occidentale et télédetection de ses biotopes par satellite [Contribution to the study of the trophic resources of the solitarious Schistocerca gregaria (Forsk.) (Orthoptera, Acrididae) in western Mauritania and remote sensing of its habitats by satellite]. Unpublished doctoral dissertation, Université Paris XI Orsay, France.Google Scholar
  33. Hamilton, J. G., & Bryceson, K. P. (1993). Use of enhanced GMS weather satellite data in locust forecasting. In S. A. Corey, D. J. Dall, & W. M. Milne (Eds.), Pest control and sustainable agriculture (pp. 444–448). Melbourne: CSIRO.Google Scholar
  34. Healey, R. G., Robertson, S. G., Magor, J. I., Pender, J., & Cressman, K. (1996). A GIS for desert locust forecasting and monitoring. International Journal of Geographic Information Systems, 10, 117–136.CrossRefGoogle Scholar
  35. Hessburg, P. F., Reynolds, K. M., Keane, R. E., James, K. M., & Salter, R. B. (2007). Evaluating wildland fire danger and prioritizing vegetation and fuel treatments. Forest Ecology and Management, 247, 1–17.CrossRefGoogle Scholar
  36. Hielkema, J. U. (1981). Desert locust habitat monitoring with satellite remote sensing: A new technology for an old problem. ITC Journal, 4, 387–417.Google Scholar
  37. Hielkema, J. U., Roffey, J., & Tucker, C. J. (1986). Assessment of ecological conditions associated with the 1980/81 desert locust plague upsurge in West Africa using environmental satellite data. International Journal of Remote Sensing, 7, 1609–1622.CrossRefGoogle Scholar
  38. Hielkema, J. U., & Snijders, F. L. (1994). Operational use of environmental satellite remote sensing and satellite communications technology for global food security and locust control by FAO: The ARTEMIS and DIANA systems. Acta Astronautica, 32, 603–616.CrossRefGoogle Scholar
  39. Hunter, D. M., McCulloch, L., & Spurgin, P. A. (2008). Aerial detection of nymphal bands of the Australian plague locust (Chortoicetes terminifera (Walker)) (Orthoptera: Acrididae). Crop Protection, 27, 118–123.CrossRefGoogle Scholar
  40. Jensen, J. R. (2006). Introductory digital image processing. Englewood Cliffs: Prentice-Hall.Google Scholar
  41. Keane, R., Burgan, R., & Van Wagtendonk, J. (2001). Mapping wildland fuels forest fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modelling. International Journal of Wildland Fire, 10, 301–319.CrossRefGoogle Scholar
  42. Kemp, W. P., Kalaris, T. M., & Quimby, W. F. (1989). Rangeland grasshopper (Orthoptera: Acrididae) spatial variability: Macroscale population assessment. Journal of Economic Entomology, 82, 1270–1276.Google Scholar
  43. Kibasa. (2006). Use of SPOT 5 Image to identify presence of locusts. International Institute for Geoinformation Science and Earth Observation, Enschede, Netherlands.Google Scholar
  44. Kumar, A., Chingkhei, R. K., & Dolendro, T. (2007). Tsunami damage assessment: A case study in Car Nicobar Island, India. International Journal of Remote Sensing, 28, 2937–2959.CrossRefGoogle Scholar
  45. Ji, R., Xie, B. Y., Li, D. M., Li, Z., & Zhang, X. (2004). Use of MODIS data to monitor the oriental migratory locust plague. Agriculture, Ecosystems and Environment, 104, 615–620.CrossRefGoogle Scholar
  46. Latchininsky, A. V., et al. (2002). саранчовые Казахстана, Средней Азии и сопредельных территорий [The Acridids of Kazakhstan, Central Asia, and Adjacent Territories]. Association for Applied Acridology International, University of Wyoming, Laramie, WY. 182 A.V. LATCHININSKY & R. SIVANPILLAIGoogle Scholar
  47. Latchininsky, A. V., Sivanpillai, R., Driese, K. L., & Wilps, H. (2007). Can early season Landsat image improve locust habitat monitoring in the Amudarya River Delta, Uzbekistan? Journal of Orthoptrea Research, 16, 167–173.CrossRefGoogle Scholar
  48. Liebhold, A. M., Rossi, R. E., & Kemp, W. P. (1993). Geostatistics and geographic information systems in applied insect ecology. Annual Review of Entomology, 38, 303–327.CrossRefGoogle Scholar
  49. Liu, Z., Shi, X., Warner, E., Ge, Y., Yu, D., Ni, S., & Wang, H. (2008). Relationship between oriental migratory locust plague and soil moisture extracted from MODIS data. International Journal of Applied Earth Observation and Geoinformation, 10, 84–91.CrossRefGoogle Scholar
  50. Lockwood, J. A., & Schell, S. P. (1995). Rangeland grasshopper outbreak dynamics: Gradient, eruptive, both, or neither? Journal of Orthoptera Research, 4, 35–48.CrossRefGoogle Scholar
  51. Louveaux A, Ghaout S., & Gillon Y. (1990). Fonctionnement de l’aire de reproduction hivernale du criquet pèlerin en Mauritanie [Functioning of the winter breeding area of the Desert locust in Mauritania]. ANPP – Deuxième Conférence Internationale sur les Ravageurs de l’Agriculture. ANPP, Versailles, France.Google Scholar
  52. Ma, J., Han, X., Hasibagan, Wang, C., Zhang, Y., Tang, J., Xie, Z., & Deveson, T. (2005). Monitoring East Asian migratory locust plagues using remote sensing data and field investigations. International Journal of Remote Sensing, 26, 629–634.CrossRefGoogle Scholar
  53. Magor, J. I., & Pender, J. (1997). Desert locust’s GIS: A researcher’s view. In S. Krall, R. Peveling, & D. Ba Diallo (Eds.), New strategies in locust control (pp. 21–26). Basel, Switzerland: Birkhauser Verlag.Google Scholar
  54. McCulloch, L., Bie, E., & Spurgin, P. A. (1994). A prototype decision support system model for control of the Australian plague locust. FAO Plant Protection Bulletin, 41, 171–176.Google Scholar
  55. McCulloch, L., & Hunter, D. M. (1983). Identification and monitoring of Australian plague locust habitats from Landsat. Remote Sensing of Environment, 13, 95–102.CrossRefGoogle Scholar
  56. Navratil, P. (2007). Object based locust habitat mapping using very high resolution satellite data in the southern Aral Sea Basin, Uzbekistan. Unpublished Master’s thesis, University of Regensburg, Regensburg, Germany.Google Scholar
  57. Pedgley, D. E. (1974). ERTS surveys a 500 km2 locust breeding site in Saudi Arabia. In S. C. Frieden, E. P. Mercanti & M. A. Becker (Eds.), Third Earth Resources Technology Satellite – Symposium (December 1973) (Vol. 1, pp. 233–246). Maryland: NASA.Google Scholar
  58. Popov, G. B. (1997). Atlas of desert locust breeding habitats. Rome: FAO.Google Scholar
  59. Rencz, A. N., & Nemeth, J. (1985). Detection of mountain pine beetle infestation using Landsat MSS and simulated thematic mapper data. Canadian Journal of Remote Sensing, 11, 50–58.Google Scholar
  60. Reynolds, D. R. (1988). Twenty years of radar entomology. Antenna, 12, 44–49.Google Scholar
  61. Riley, J. R. (1989). Remote Sensing in Entomology. Annual Reviews in Entomology, 34, 247–271.CrossRefGoogle Scholar
  62. Riley, J. R., & Reynolds, D. R. (1997). Vertical-looking radar as a means to improve forecasting and control of desert locusts. In S. Krall, R. Peveling, & D. Ba Diallo (Eds.), New strategies in locust control (pp. 47–54). Basel, Switzerland: Birkhauser Verlag.Google Scholar
  63. Roffey, J. (1969). Report on radar studies on the desert locust, Schistocerca gregaria (Forskål) in the Niger Republic, (September–October 1968) (Occasional Report no. 17). London: Anti-Locust Research Centre.Google Scholar
  64. Schaefer, G. W. (1969). Radar studies of locust, moth and butterfly migration in the Sahara. Proceedings of the Royal Entomological Society of London, C34, 33, 39–40.Google Scholar
  65. Schaefer, G. W. (1976). Radar observations of insect flight. In R. C. Rainey (ed.), Insect Flight. Symposia of the Royal Entomological Society (Vol. 7, pp. 157–197). Oxford, UK: Blackwell.Google Scholar
  66. Schell, S. P. (1994). Spatial analysis of ecological factors related to Grasshopper (Orthoptera: Acrididae) Population dynamics in wyoming. Unpublished Master’s Thesis, University of Wyoming, Laramie, WY, USA.Google Scholar
  67. Schell, S. P., & Lockwood, J. A. (1995). Spatial analysis optimizes grasshopper management. GIS World, 8, 68–73.Google Scholar
  68. Schell, S. P., & Lockwood, J. A. (1996). Detecting grasshopper infestations with satellite imagery: Seeing is believing. Metaleptea, 16, 9–10.Google Scholar
  69. Schell, S. P., & Lockwood, J. A. (1997a). Spatial analysis of ecological factors related to rangeland grasshopper (Orthoptera: Acrididae) outbreaks in Wyoming. Environmental Entomology, 26, 1343–1353.Google Scholar
  70. Schell, S. P., & Lockwood, J. A. (1997b). Spatial characteristics of rangeland grasshopper (Orthoptera: Acrididae) population dynamics in Wyoming: Implications for pest management. Environmental Entomology, 26, 1056–1065.Google Scholar
  71. Showler, A. T. (2003). Remote sensing for desert locusts: panacea, tool, or hoax? In J. A. Lockwood (ed.), Advances in applied acridology – 2003 (pp. 5–8). Laramie, WY: Association for Applied Acridology International/University. of Wyoming.Google Scholar
  72. Smith, A. D., Riley, J. R., & Gregory, R. D. (1993). A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar. Philosophical Transactions of the Royal Society of London, B 340, 393–404.CrossRefGoogle Scholar
  73. Sivanpillai, R., & Latchininsky, A. V. (2007). Mapping locust habitats in Amudarya River Delta, Uzbekistan with multi-temporal MODIS imagery. Environmental Management, 39, 876–886.CrossRefPubMedGoogle Scholar
  74. Sivanpillai, R., & Latchininsky, A. V. (2008). Can late summer Landsat data be used for mapping Asian migratory locust, Locusta migratoria migratoria, oviposition sites in the Amudarya River delta, Uzbekistan? Entomologia Experimentalis et Applicata, 128, 346–353.CrossRefGoogle Scholar
  75. Sivanpillai, R., Latchininsky, A. V., Driese, K. L., & Kambulin, V. E. (2006). Mapping locust habitats in River Ili Delta, Kazakhstan, using Landsat imagery. Agriculture Ecosystems & Environment, 117, 128–134.CrossRefGoogle Scholar
  76. Sivanpillai, R., Latchininsky, A. V., Peveling, R., & Pankov, V. I. (2009). Utility of the IRS-AWiFS Data to map the potential Italian locust (Calliptamus italicus) habitats in northeast Kazakhstan. Proceedings of the 2009 ASPRS Annual Conference, ASPRS, Baltimore, MD.Google Scholar
  77. Tappan, G. G., Moore, D. G., & Knausenberger, W. I. (1991). Monitoring grasshopper and locust habitats in Sahelian Africa using GIS and remote sensing technology. International Journal of Geographical Information Systems, 5, 123–135.CrossRefGoogle Scholar
  78. Tian, H. D., Ji, R., Xie, B. Y., Li, X. H., & Li, D. M. (2008). Using multi-temporal Landsat ETM+ data to monitor the plague of oriental migratory locust. International Journal of Remote Sensing, 29, 1685–1692.CrossRefGoogle Scholar
  79. Tratalos, J. A., & Cheke, R. A. (2006). Can NDVI GAC imagery be used to monitor desert locust breeding areas? Journal of Arid Environments, 64, 342–356.CrossRefGoogle Scholar
  80. Tucker, C. J., Hielkema, J. U., & Roffey, J. (1985). The potential of satellite remote sensing of ecological conditions for survey and forecasting desert-locust activity. International Journal of Remote Sensing, 6, 127–138.CrossRefGoogle Scholar
  81. Uvarov, B. P. (1977). Grasshoppers and locusts. A handbook of general acridology (Vol. 2) London: COPR.Google Scholar
  82. Van Huis, A., Cressman, K., & Magor, J. I. (2007). Preventing desert locust plagues: Optimizing management interventions. Entomologia Experimentalis et Applicata, 122, 191–214.CrossRefGoogle Scholar
  83. Voss, F., & Dreiser, U. (1994). Mapping of Desert locust and other migratory pests habitats using remote sensing techniques. In S. Krall & H. Wilps (Eds.), New trends in locust control (Vol. 245, pp. 23–29). GTZ Schriftenreiche. Germany: Eschborn.Google Scholar
  84. Voss, F., & Dreiser, U. (1997). Mapping of desert locust habitats using remote sensing techniques. In S. Krall, R. Peveling, & D. Ba Diallo (Eds.), New Strategies in locust control (pp. 37–45). Basel/Switzerland: Birkhauser Verlag.Google Scholar
  85. Voss, F., Dreiser, U., & Popov, G. B. (1992). Potential Desert locust biotopes – Tokar delta (Sudan). Map sheet. Eschborn: GTZ.Google Scholar
  86. Voss, F., Dreiser, U., & Popov, G. B. (1993a). Principaux biotopes du Criquet pèlerin dans le Nord du Tilemsi (Mali) [Main habitats of the Desert locust in the North Tilemsi (Mali)]. Map sheet. Eschborn: GTZ.Google Scholar
  87. Voss, F., Dreiser, U., & Popov, G. B. (1993b). Principaux biotopes du Criquet pèlerin dans l’Adrar des Iforhas (Mali) [Main habitats of the Desert locust in the Adrar des Iforhas (Mali)]. Map sheet. Eschborn: GTZ.Google Scholar
  88. Voss F., Dreiser U., & Popov, G. B. (1994). Principaux biotopes du Criquet pèlerin dans la region Akjoujt-Atar (Mauritanie) [Main habitats of the Desert locust in the region of Akjoujt-Atar (Mauritania)]. Map sheet. Eschborn: GTZ.Google Scholar
  89. Wewetzer, A., Krall, S., & Schultz, F. A. (1993). Methods for the assessment of crop losses due to grasshoppers and locusts. Eschborn: GTZ.Google Scholar
  90. Wikantika, K., Sinaga, A., Hadi, F., & Darmawan, S. (2007). Quick assessment on identification of damaged building and land-use changes in the post-tsunami disaster with a quick-look image of IKONOS and Quickbird (a case study in Meulaboh City, Aceh). International Journal of Remote Sensing, 28, 3037–3044.CrossRefGoogle Scholar
  91. Woldewahid, G. (2003). Habitats and spatial pattern of solitarious desert locusts (Schistocerca gregaria Forks.) on the coastal plain of Sudan. Doctoral dissertation, Wageningen University, The Netherlands.Google Scholar
  92. Wynne, R. H., & Carter, D. B. (1997). Will remote sensing live up to its promise for forest management? Journal of Forestry, 95, 23–25.Google Scholar
  93. Zha, Y., Gao, J., Ni, S., & Shen, N. (2005). Temporal filtering of successive MODIS data in monitoring a locust outbreak. International Journal of Remote Sensing, 26, 5665–5674.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alexandre V. Latchininsky
    • 1
  • Ramesh Sivanpillai
    • 2
  1. 1.Department of Renewable ResourcesUniversity of WyomingLaramieUSA
  2. 2.Department of Botany and Wyoming Geographic Information Science CenterUniversity of WyomingLaramieUSA

Personalised recommendations