Advertisement

Wideband CMOS LNA Design Techniques

  • Ahmed A. Youssef
  • James Haslett
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

The low-noise amplifier (LNA) is the backbone of any radio frequency (RF) communication receiver. Its specifications define the overall receiver noise performance and can have deleterious effects on the overall linearity. CMOS LNAs specifically receive intense attention because they help in achieving a one-chip solution by integrating the LNA with the receiver’s baseband digital signal processing blocks that are inherently realized in CMOS technology. The one-chip solution reduces overall package cost and form factor. Moreover, it saves the power required to drive package pins in the multi-chip solution [36, 37].

Keywords

Noise Figure Loop Gain Input Match Overdrive Voltage Cascode Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 36.
    M. Zargari, S. Jen, B. Kaczynski, M. Lee, M. Mack, S. Mehta, S. Mendis, K. Onodera, H. Samavati, W. Si, K. Singh A. Tabatabaei, M Terrovitis, D. Weber, D. Su, B. Wooley, A single-chip dual-band, tri-mode CMOS transceiver for IEEE 802.11a/b/g WLAN, in IEEE International Solid-State Circuits Conference, San Francisco, February 2004, pp. 96–97Google Scholar
  2. 37.
    M. Zargari, D.K. Su, C.P. Yue, S. Rabii, D. Weber, B.J. Kaczynski, S.S. Mehta, K. Singh, S. Mendis, B.A. Wooley, A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN, in IEEE International Solid-State Circuits Conference, San Francisco, February 2002, pp. 126–127Google Scholar
  3. 38.
    S. Andersson, O. Drugge, C. Svensson, Wideband LNA for a multistandard wireless receiver in 0.18 μm CMOS, in IEEE European Solid-State Circuits Conference, Estoril, Potugal, September 2003, pp. 655–658Google Scholar
  4. 39.
    J. Craninckx, M. Liu, D. Hauspie, V. Giannini, T. Kim, J. Lee, M. Libois, D. Debaillie, C. Soens, M. lngels, A. Baschirotto, J. Van Driessche, L. Van der Perre, P. Vanbekbergen, A fully reconfigurable software-defined radio transceiver in 0.l3 μm CMOS, in IEEE International Solid-State Circuits Conference, San Francisco, February 2007, pp. 346–347Google Scholar
  5. 40.
    R. Bagheri, A. Mirzaei, S. Chehrazi, M.E. Heidari, M. Lee, M. Mikhemar, W. Tang, A. Abidi, An 800-MHz 6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE J. Solid State Circuits 41(12), 2860–2876 (December 2006)CrossRefGoogle Scholar
  6. 41.
    A. Youssef, J. Haslett, S. Magierowski, Design issues for sensor network RF receivers, in IEEE Canadian Conference on Electrical and Computer Engineering, Vancouver, British Columbia, April 2007, pp. 1535–1538Google Scholar
  7. 42.
    A.Youssef, J. Haslett, J. Nielsen, 4G wireless systems: multi-media over wireless, in Wireless Technologies and Circuits Workshop, European Microwave Week, Manchester, UK, September 2006, pp. 8–12Google Scholar
  8. 43.
    J.S. Goo, H.T. Ahn, D.J. Ladwig, Z. Yu, T.H. Lee, R.W. Dutton, A noise optimization technique for integrated low-noise amplifiers. IEEE J. Solid State Circuits 37(8), 994–1002 (August 2002)CrossRefGoogle Scholar
  9. 44.
    A. van der Ziel, Noise in Solid State Devices and Circuits (Wiley, New York, NY, 1986)Google Scholar
  10. 45.
    J. Haslett, F. Trofimenkoff, Thermal noise in field-effect devices. Proc. Inst. Electr. Eng. 116(11), 1863–1868 (November 1969)CrossRefGoogle Scholar
  11. 46.
    A.J. Scholten, H.J. Tromp, L.F. Tiemeijer, R. van Langevelde, R.J. Havens, P.W.H. de Vreede, R.F.M. Roes, P.H. Woerlee, A.H. Montree, D.B.M. Klaassen, Accurate thermal noise model for deep-submicron CMOS. International Electron Devices Meeting. IEEE Electron Devices Society, pp. 155–158, December 1999Google Scholar
  12. 47.
    C.H. Chen, M.J. Deen, Channel noise modeling of deep submicron MOSFETs. IEEE Trans. Electron Devices 49(8), 1484–1487 (August 2002)CrossRefGoogle Scholar
  13. 48.
    A. Scholten, L. Tiemeijer, R. van Langevelde, R. Havens, A. Van Duijnhoven, R. de Kort, D. Klaassen, Compact modeling of noise for RF CMOS circuit design. IEE Proc. Circuits Devices Syst. 151(2), 167–174 (April 2004)CrossRefGoogle Scholar
  14. 49.
    P. Jindal, Compact noise models for MOSFETs. IEEE J. Solid State Circuits 53(9), 2051–2061 (September 2006)Google Scholar
  15. 50.
    P. Kelin, An analytical thermal model of deep submicron MOSFETs. IEEE Electron Device Lett. 20(8), 339–401 (August 1999)Google Scholar
  16. 51.
    G. Knoblinger, P. Kelin, M. Tibout, A new model for thermal channel noise of deep-submicron MOSFETS and its application in RF CMOS design. IEEE J. Solid State Circuits 36(5), 831–837 (May 2001)CrossRefGoogle Scholar
  17. 52.
    M. Obrecht, T. Manku, M. Elmasry, Simulation of temperature dependence of microwave noise in metal-oxide-semiconductor-field-effect transistors. J. Appl. Phys. 39, no. 4A, 1690–1693 (April 2000)Google Scholar
  18. 53.
    M.S. Obrecht, E. Abou-Allam, T. Manku, Diffusion current and its effect on noise in submicron MOSFETs. IEEE Trans. Electron Devices 49(3), 524–526 (March 2002)CrossRefGoogle Scholar
  19. 54.
    W. Liu, M.C. Chang, Transistor transient studies including transcapacitive current and distributive gate resistance for inverter circuits. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 45(4), 416–422 (April 1998)CrossRefGoogle Scholar
  20. 55.
    B. Razavi, R.H. Yan, K.F. Lee, Impact of distributed gate resistance on the performance of MOS devices. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 41(11), 750–754 (November 1994)CrossRefGoogle Scholar
  21. 56.
    J.T. Colvin, S.S. Bhatia, K.K.O, Effects of substrate resistance on LNA performance and a bondpad structure for reducing the effects in a silicon bipolar technology. IEEE J. Solid State Circuits 34(9), 1339–1344 (September 1999)CrossRefGoogle Scholar
  22. 57.
    E.P. Vandamme, L.K. Vandamme, Critical discussion on unified 1/f noise models for MOSFETs. IEEE Trans. Electron Devices 47(11), 2146–2152 (November 2000)CrossRefGoogle Scholar
  23. 58.
    T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, New York, NY, 2004)Google Scholar
  24. 59.
    P. Wambacq, W. Sansen, Distortion Analysis of Analog Integrated Circuits, 1st edn. (Kluwer Academic Publishers, Norwell, MA, 1998)Google Scholar
  25. 60.
    V. Aparin, G. Brown, L. Larson, Linearization of CMOS LNA’S via optimum gate biasing, in IEEE International Symposium on Circuits and Systems, Vancouver, British Columbia, May 2004, pp. 748–751Google Scholar
  26. 61.
    W. Sansen, Analog Design Essentials, 1st edn. (Springer Publishers, 2008)Google Scholar
  27. 62.
    A. Abidi, G. Pottie, W. Kaiser, Power-conscious design of wireless circuits and systems. Proc. IEEE 88(10), 1528–1545 (October 2000)CrossRefGoogle Scholar
  28. 63.
    J.Y. Chang, A. Abidi, M. Gaitan, Large suspended inductors on silicon and their use in a 2 μm CMOS RF amplifier. IEEE Electron Device Lett. 14(10), 246–248 (May 1993)CrossRefGoogle Scholar
  29. 64.
    S. Voinigescu, T. Dickson, T. Chalvatzis, A. Hazneci, E. Laskin, R. Beerkens, I. Khalid, Algorithmic design methodologies and design porting of wireline transceiver IC building blocks between technology nodes, in IEEE Custom Integrated Circuits Conference, San Jose, California, September 2005, pp. 111–118Google Scholar
  30. 65.
    A. Rofougaran, J.Y. Chang, M. Rofougaran, A. Abidi, A 1 GHz CMOS RF front-end IC for a direct-conversion wireless receiver. IEEE J. Solid State Circuits 31(7), 880–889 (July 1996)CrossRefGoogle Scholar
  31. 66.
    E.H. Nordholt, The Design of High-Performance Negative-Feedback Amplifiers (Elsevier, Amsterdam, 1983)Google Scholar
  32. 67.
    E. Duvivier, G. Puccio, S. Cipriani, L. Carpineto, P. Cusinato, B. Bisanti, F. Galant, F. Chalet, F. Coppola, S. Cercelaru, N. Vallespin, J.C. Jiguet, G. Sirna, A fully integrated zero-IF transceiver for GSM-GPRS quad-band application. IEEE J. Solid State Circuits 38(12), 2249–2257 (December 2003)CrossRefGoogle Scholar
  33. 68.
    H. Adiseno, H. Olsson, A 1.8-V wide-band CMOS LNA for multiband multistandard front-end receiver, in IEEE European Solid-State Circuits Conference, Estoril, Portugal, September 2003pp. 141–144Google Scholar
  34. 69.
    J. Janssens, M. Steyaert, H. Miyakawa, A 2.7 volt CMOS broadband low-noise amplifier, in IEEE Symposium on VLSI Circuits, Kyoto, Japan, June 1997, pp. 87–88Google Scholar
  35. 70.
    A. van der Ziel, Noise in solid-state devices and lasers. Proc. IEEE 58(8), 1178–1206 (August 1970)CrossRefGoogle Scholar
  36. 71.
    D.K. Shaeffer, T.H. Lee, A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J. Solid State Circuits 32(5), 745–759 (May 1997)CrossRefGoogle Scholar
  37. 72.
    D.K. Shaeffer, T.H. Lee, Corrections to A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J. Solid State Circuits 40(6), 1397–1398 (June 2005)CrossRefGoogle Scholar
  38. 73.
    A. Youssef, Design guidelines for the noise optimization of a 0.18 Micron CMOS low-noise amplifier. Intl. J. Analog Integr. Circuits Signal Process. 46(3), 193–201 (March 2006)CrossRefGoogle Scholar
  39. 74.
    T.K. Nguyen, C.H. Kim, M.S. Yang, S.G. Lee, CMOS low-noise amplifier design optimization techniques. IEEE Trans. Microw. Theory Tech. 52(5), 1433–1442 (May 2004)CrossRefGoogle Scholar
  40. 75.
    J.S. Goo, H.T. Ahn, D.J. Ladwig, Z. Yu, T.H. Lee, R.W. Dutton, A noise optimization technique for integrated low-noise amplifiers. IEEE J. Solid State Circuits 37(8), 994–1002 (August 2002)CrossRefGoogle Scholar
  41. 76.
    L. Belostotski, J. Haslett, Noise figure optimization of inductively degenerated CMOS LNAs with integrated gate inductors. IEEE Trans. Circuits Syst. Part I: Regular Papers 53(7), 1409–1422 (July 2006)CrossRefGoogle Scholar
  42. 77.
    F. Gatta, E. Sacchi, F. Svelto, P. Vilmercati, R. Castello, A 2-dB noise figure 900-MHz differential CMOS LNA. IEEE J. Solid State Circuits 36(10), 1444–1452 (October 2001)CrossRefGoogle Scholar
  43. 78.
    J. Janssens, J. Crols, M. Steyaert, A 10 mW inductorless, broadband CMOS low noise amplifier for 900 MHz Wireless Communications, in IEEE Custom Integrated Circuits Conference, San Jose, California, September 1998, pp. 75–78Google Scholar
  44. 79.
    J. Zhou, D. Allstot, A fully integrated CMOS 900MHz LNA utilizing monolithic transformers, in IEEE International Solid-State Circuits Conference, San Francisco, February 1998, pp. 132–133Google Scholar
  45. 80.
    A. Shahani, D. Shaeffer, T.H. Lee, A 12mW wide dynamic range CMOS front-end for a portable GPS receiver. IEEE J. Solid State Circuits 32(12), 2061–2070 (December 1997)CrossRefGoogle Scholar
  46. 81.
    A. Karanicolas, A 2.7-V 900-MHz CMOS LNA and mixer. IEEE J. Solid State Circuits 31(12), 1939–1944 (December 1996)CrossRefGoogle Scholar
  47. 82.
    A. Youssef, J. Haslett, Low power interference-robust UWB low noise amplifier in 0.18-μm CMOS technology, in IEEE International Midwest Symposium on Circuits and Systems, Montreal, Canada, August 2007, pp. 1006–1009Google Scholar
  48. 83.
    S. Chehrazi, A. Mirzaei, R. Bagheri, A. Abidi, A 6.5 GHz wideband CMOS low noise amplifier for multi-band use, in IEEE Custom Integrated Circuits Conference, San Jose, California, September 2005, pp. 801–804Google Scholar
  49. 84.
    H.J. Lee, D.S. Ha, S.S. Choi, A 3 to 5GHz CMOS UWB LNA with input matching using miller effect, in IEEE International Solid-State Circuits Conference, San Francisco, February 2006, pp. 731–740Google Scholar
  50. 85.
    R. Hu, An 8-20-GHz wide-band LNA design and the analysis of its input matching mechanism. IEEE Microw. Wireless Compon. Lett. 14(11), 528–530 (November 2004)CrossRefGoogle Scholar
  51. 86.
    R. Hu, Wide-band matched LNA design using transistor’s intrinsic gate-drain capacitor. IEEE Trans. Microw. Theory Tech. 54(3), 1277–1286 (March 2006)CrossRefGoogle Scholar
  52. 87.
    L. Belostotski, J. Haslett, Wide band room temperature 0.35-dB noise figure LNA in 90-nm Bulk CMOS, in IEEE Radio and Wireless Symposium, Long Beach, California, January 2007, pp. 221–224Google Scholar
  53. 88.
    T. Cho, E. Dukatr, M. Mack, D. MacNally, M. Marringa, A single-chip CMOS direct-conversion transceiver for 900 MHz spread-spectrum digital cordless phones, in IEEE International Solid-State Circuits Conference, San Francisco, February 1999, pp. 228–229Google Scholar
  54. 89.
    J. Zhou, S. Embabi, J.P. de Gyvez, E. Sanchez-Sinencio, Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design, in IEEE European Solid-State Circuits Conference, Stockholm, Sweden, September 2000, pp. 77–80Google Scholar
  55. 90.
    S.B.T. Wang, A.M. Niknejad, R.W. Brodersen, A sub-mW 960-MHz ultra wideband CMOS LNA, in IEEE Radio Frequency Integrated Circuits Symposium, Long Beach, California, June 2005, pp. 35–38Google Scholar
  56. 91.
    X. Li, S. Shekhar, D. Allstot, Gm boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18 µm CMOS. IEEE J. Solid State Circuits 40(12), 2609–2619 (December 2005)CrossRefGoogle Scholar
  57. 92.
    F. Bruccoleri, E.A.M. Klumperink, B. Nauta, Noise cancelling in wideband CMOS LNAs, in IEEE International Solid-State Circuits Conference, San Francisco, February 2002, pp. 407–407Google Scholar
  58. 93.
    J. Borremans, P. Wambacq, D. Linten, An ESD-protected DC-to-6 GHz 9.7 mW LNA in 90 nm digital CMOS, in IEEE International Solid-State Circuits Conference, San Francisco, February 2007, pp. 422–423Google Scholar
  59. 94.
    R. Ramzan, S. Andersson, J. Dabrowski, C. Svensson, A 1.4 V 25 mW inductorless wideband LNA in 0.l3 μm CMOS, in IEEE International Solid-State Circuits Conference, San Francisco, February 2007, pp. 424–425Google Scholar
  60. 95.
    Y. Ding and R Harjani, A +18 dBm IIP3 LNA in 0.35μm CMOS, in IEEE International Solid-State Circuits Conference, San Francisco, February 2001, pp. 162–163Google Scholar
  61. 96.
    Y.S. Youn, J.H. Chang, K.J. Koh, Y.J. Lee, H.K. Yu, A 2 GHz 16 dBm IIP3 low noise amplifier in 0.25 μm CMOS technology, in IEEE International Solid-State Circuits Conference, San Francisco, February 2003, pp. 452–453Google Scholar
  62. 97.
    V. Aparin, N. Kim, G. Brown, Y. Wu, A. Cicalini, S. Kwok, C. Persico, A fully-integrated highly linear zero-IF CMOS cellular CDMA receiver, in IEEE International Solid-State Circuits Conference, San Francisco, February 2005, pp. 324–325Google Scholar
  63. 98.
    L. Belostotski, Wide-Band CMOS Low Noise Amplifier for the Square Kilometer Array Radio Telescope. Ph.D. Thesis, University of Calgary, 2007Google Scholar
  64. 99.
    P. van Zeijl, J.W. Eikenbroek, P.P. Vervoort, S.S. Tangenberg, G. Shipton, E. Kooistra, I. Keekstra, D. Belot, A bluetooth radio in 0.18 μm CMOS, in IEEE International Solid-State Circuits Conference, San Francisco, February 2002, pp. 1679–1687Google Scholar
  65. 100.
    J. Rogin, I. Kouchev, Q. Huang, A 1.5 V 45 mW direct conversion WCDMA receiver IC in 0.13 μm CMOS, in IEEE International Solid-State Circuits Conference, San Francisco, February 2003, pp. 268–269Google Scholar
  66. 101.
    J.H. Zhan, S. Stewart, A 5 GHz resistive-feedback CMOS LNA for low-cost multi-standard applications. IEEE International Solid-State Circuits Conference, San Francisco, February 2006, pp. 721–730Google Scholar
  67. 102.
    I. Nam, B. Kim, K. Lee, CMOS RF amplifier and mixer circuits utilizing complementary characteristic of parallel combined NMOS and PMOS devices. IEEE Trans. Microw. Theory Tech. 53(5), 1662–1671 (May 2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Entropic Communications, Inc.San DiegoUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations