Advertisement

Objects, Words and Actions: Some Reasons Why Embodied Models are Badly Needed in Cognitive Psychology

  • Anna M. BorghiEmail author
  • Daniele Caligiore
  • Claudia Scorolli
Chapter

Abstract

In the present chapter we report experiments on the relationships between visual objects and action and between words and actions. Results show that seeing an object activates motor information and that language is also grounded in perceptual and motor systems. They are discussed within the framework of embodied cognitive science. We argue that models able to reproduce the experiments should be embodied organisms, whose brain is simulated with neural networks and whose body is as similar as possible to humans’ body. We also claim that embodied models are badly needed in cognitive psychology, as they could help to solve some open issues. Finally, we discuss potential implications of the use of embodied models for embodied theories of cognition.

Keywords

Motor System Compatibility Effect Mirror Neuron Precision Grip Power Grip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. Barsalou, L. W. (1999). Perceptual Symbol Systems. Behav. Brain Sci. 22, 577–609.Google Scholar
  2. Beauchamp, M. S., Lee, K. E., Argall, B. D., and Martin, A. (2004). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41, 809–23.Google Scholar
  3. Borghi, A. M., Bonfiglioli, C., Lugli, L., Ricciardelli, P., Rubichi, S., and Nicoletti, R. (2007). Are visual stimuli sufficient to evoke motor information? Studies with hand primes. Neurosci. Lett. 411, 17–21.Google Scholar
  4. Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., and Rizzolatti, G. (2005). Listening to action related sentences modulates the activity of the motor system: A combined TMS and behavioral study. Cogn. Brain Res. 24, 355–63.CrossRefGoogle Scholar
  5. Caligiore, D., Borghi, A. M., Parisi, D., and Baldassarre, G. (2009). Affordances and compatibility effects: A neural-network computational model. In J. Mayor, N. Ruh, and K. Plunkett (Eds.), Connectionist models of behaviour and cognition II: Proceedings of the 11th Neural Computation and Psychology Workshop (pp. 15–26). Singapore: WorldScientific.Google Scholar
  6. Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition 33, 25–62.CrossRefGoogle Scholar
  7. Ellis, R. and Tucker, M. (2000). Micro-affordance: The potentiation of components of action by seen objects. Br. J. Psychol. 91, 451–471.CrossRefGoogle Scholar
  8. Erlhagen, W. and Schöner, G. (2002). Dynamic field theory of motor preparation. Psychol. Rev. 109, 545–572.CrossRefGoogle Scholar
  9. Fodor J. (1975). The language of thought. Cambridge, MA: Harvard University Press.Google Scholar
  10. Fogassi, L. and Gallese, V. (2004). Action as a binding key to multisensory integration. In G. Calvert, C. Spence, and B. E. Stein (Eds.), Handbook of multisensory processes. Cambridge: MIT Press.Google Scholar
  11. Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain 119, 593–609.CrossRefGoogle Scholar
  12. Gallese, V., and Goldman, A. (1998). Mirror neurons and the simulation theory of mind reading. Trends Cogn. Sci. 2, 493–501.CrossRefGoogle Scholar
  13. Gallese, V. and Lakoff, G. (2005). The brain’s concepts: The role of the sensorimotor system in conceptual knowledge. Cogn. Neuropsychol. 21, 455–479.CrossRefGoogle Scholar
  14. Jeannerod, M. (2007). Motor cognition. What actions tell to the self. Oxford: Oxford University Press.Google Scholar
  15. Landauer, T. K. and Dumais, S.T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211–240.CrossRefGoogle Scholar
  16. Martin, A., Wiggs, C. L, Ungerleider, L. G. and Haxby, G. V. (1996). Neural correlates of category specific knowledge. Nature 379, 649–652.CrossRefGoogle Scholar
  17. Martin, A. (2001). Functional neuroimaging of semantic memory. In R. Cabeza and A. Kingstone (Eds.), Handbook of functional neuroimaging of cognition (pp. 153–186). Cambridge: MIT Press.Google Scholar
  18. Martin, A. and Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Curr. Opin. Neurobiol. 11, 194–201.CrossRefGoogle Scholar
  19. Miller, E. K. and Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Ann. Rev. Neurosci. 24, 167–202.CrossRefGoogle Scholar
  20. Milner, A. D., and Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.Google Scholar
  21. Pouget, A. and Latham, P. E. (2003). Population codes. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (2nd ed.). Cambridge, MA: The MIT Press.Google Scholar
  22. Pulvermüller, F. (1999). Words in the brain’s language. Behav. Brain Sci. 22, 253–336.CrossRefGoogle Scholar
  23. Pulvermüller, F. (2003). The neuroscience of language: On brain circuits of words and serial order. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Rizzolatti, G. and Arbib, M. A. (1998). Language within our grasp. Trends Neurosci. 21, 188–194.CrossRefGoogle Scholar
  25. Scorolli, C. and Borghi, A. (2007). Sentence comprehension and action: Effector specific modulation of the motor system. Brain res. 1130, 119–124.CrossRefGoogle Scholar
  26. Scorolli, C., Borghi, A. M., and Glenberg, A. M. (2009). Language-induced motor activity in bimanual object lifting. Exp. Brain Res. 193, 43–53.Google Scholar
  27. Simmons, W. K., Pecher, D., Hamann, S. B., Zeelenberg, R., and Barsalou, L. W. (2003). fMR evidence for modality-specific processing of conceptual knowledge on six modalities. Meeting of the Society for Cognitive Neuroscience, New York.Google Scholar
  28. Tucker, M. and Ellis, R. (2001). The potentiation of grasp types during visual object categorization. Vis. Cogn. 8, 769–800.CrossRefGoogle Scholar
  29. Wermter, S., Weber, C., Elshaw, M., Panchev, C., Erwin, H., and Pulvermüller, F. (2004). Towards Multimodal Neural Robot Learning. Robot. Autonom. Syst. J. 47, 171–175.CrossRefGoogle Scholar
  30. Wermter, S., Weber, C., Elshaw, M., Gallese, V., and Pulvermüller, F. (2005). Grounding neural robot language in action. In S. Wermter, G. Palm, and M. Elshaw (Eds.), Biomim. Neur. Learn. for Intelligent Robots (pp. 162–181).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Anna M. Borghi
    • 1
    • 2
    Email author
  • Daniele Caligiore
    • 1
    • 2
  • Claudia Scorolli
    • 1
  1. 1.Department of PsychologyUniversity of BolognaBolognaItaly
  2. 2.Institute of Cognitive Sciences and Technologies, CNRRomeItaly

Personalised recommendations