Society from the Statistical Mechanics Perspective

Chapter

Abstract

This chapter presents an introduction to social modeling with statistical mechanics. An elementary description of spin systems is given first, then we explain how this description has been applied to binary models of the social sciences that have implications for public policies. Next we suggest other applications to research in the social sciences.

Keywords

Partition Function Statistical Mechanic Spin System Thermodynamic Limit Immigrant Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. Bornholdt, S., (2001). Expectation bubbles in a spin model of markets: Intermittency from frustration across scales. Int. J. Mod. Phys. 12(5), 667–674.CrossRefGoogle Scholar
  2. Brock, W. and Durlauf, S. (2001). Discrete choice with social interactions. Rev. Econ. Stud. 68(2), 235–260.CrossRefGoogle Scholar
  3. Brown, L. M. and Lopez, G. E. (2001). Political contacts: Analyzing the role of similarity in theories of prejudice. Polit. Psychol. 22(2), 403–428.CrossRefGoogle Scholar
  4. Charness, G. and Rabin, M. (2002). Understanding social preferences with simple tests. Quart. J. Econ. 117(3), 817–869.CrossRefGoogle Scholar
  5. Cipra, B. A. (1987). An introduction to the Ising model. Am. Math. Mon. 94(10), 937–959.CrossRefGoogle Scholar
  6. Cont, R. and Lowe, M. (2003). Social distance, heterogeneity and social interactions. CMAP, Ecole Poly- technique, Rapport Interne. Working Paper No. 505.Google Scholar
  7. Contucci, P. and Ghirland, S. (2007). Modeling Society with statistical mechanics: An application to cultural contact and immigration. Qual. Quan. 41(4), 569–578.CrossRefGoogle Scholar
  8. Contucci, P., Gallo, I., and Ghirlanda, S. (2007). Equilibria of culture contact derived from ingroup and outgroup attitudes. Preprint, December 2007. To appear in “Mathematics and Society” Ed. Springer. http://arxiv.org/physics/0712.1119v1
  9. Contucci, P., Gallo, I., and Menconi, G. (2008). Phase transitions in social sciences: Two-populations mean field theory. Int. J. Mod. Phys. B 22(14), 1–14. http://arxiv.org/physics/0702076 Google Scholar
  10. Day, P. (2002). Molecular magnets: The prehistory. Notes Rec. R. Soc. Lond. 56(1), 95–103.CrossRefGoogle Scholar
  11. Durlauf, S. N. (2001). A framework for the study of individual behavior and social interactions. Sociol. Methodol. 31(1), 47–87.CrossRefGoogle Scholar
  12. Fehr, E. and Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. Q. J. Econ. 114(3), 817–868.CrossRefGoogle Scholar
  13. Grim, P., Selinger, E., Braynen, W., Rosenberg, R., Au, R., Louie, N., and Connelly, J. (2005). Modeling prejudice reduction: Spatialized game theory and the contact hypothesis. Public Aff. Q. 19(2), 95–125.Google Scholar
  14. Intriligator, M. D. (1973). A probabilistic model of social choice. Rev. Econ. Stud. 40(4), 553–560.CrossRefGoogle Scholar
  15. Kulkarni, R. G., Stough, R. R., and Haynes, K. E. (1996). Spin glass model of congestion and emission: An exploratory step. Trans. Res. Part C: Emerg. Tech. 4(6), 407–424.CrossRefGoogle Scholar
  16. Michinov, E. and Monteil, J. M. (2002). The similarity-attraction relationship revisited: Divergence between the effective and behavioral facets of attraction. Eur. J. So. Psychol. 32, 485–500.CrossRefGoogle Scholar
  17. Pool, R. (1989). Strange bedfellows. Science 245(2), (180–204).Google Scholar
  18. Powers, D. A. and Ellison, C. G. (1995). Interracial contact and black racial attitudes: The contact hypothesis and selective bias. Soc. Forces 74(1), 205–226.Google Scholar
  19. Sigelman, L. and Welch, S. (1993). The contact hypothesis revisited: Black–white interaction and positive racial attitude. Soc. Forces 71(3), 781–795.Google Scholar
  20. Sorensen, A. B. (1978). Mathematical models in sociology. Ann. Rev. Sociol. 4, 345–371.CrossRefGoogle Scholar
  21. Sznajd-Weron, K. and Sznajd, J. (2000). Opinion evolution in closed communities. Int. J. Mod. Phys. 11(6), 1157–1165.CrossRefGoogle Scholar
  22. Toulouse, G., Dehaene, S., and Changeux, J. P. (1986). Spin glass model of learning by selection. Proc. Natl. Acad. Sci. 83, 1695–1698.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Kaplan Shinyway Overseas Pathway CollegeHangZhouP.R. China

Personalised recommendations