The Idea of Space in Art, Technology, and Mathematics

  • Michele EmmerEmail author


Both art and architecture have always been influenced by scientific and mathematical ideas of space. In the 20th century, artists and architects profoundly changed their view of the structure of the external world in the light of the new geometrical ideas of space. New technologies further contributed to change the idea of space.


Art Architecture Technology Computer graphics Mathematics 


  1. Bill, M. (1949). A mathematical approach to art, reprinted with the author’s corrections in M. Emmer (Ed.), (pp. 5–9) 1992.Google Scholar
  2. Bill, M. (1970). Come cominciai a fare le superfici a faccia unica. In A. Quintavalle (Ed.), Max Bill (pp. 23–25). catalogue of the exhibition, Parma.Google Scholar
  3. Courant, R. and Robbins, H. (1940). What is mathematics? An elementary approach to ideas and methods. Oxford University Press, New York.Google Scholar
  4. Di Cristina, G., (Ed.). (2001). Architecture and science. Chichester: Wiley-Academy.Google Scholar
  5. Eisenman Architects (2004). Max Reinhardt Haus. In Marsilio (Ed.), Metamorph: Trajectories (p. 252), catalogue, La Biennale di Venezia.Google Scholar
  6. Emmer, M., (Ed.). (1992). Visual mathematics. special issue, Leonardo, Pergamon Press, vol. 25, n. 3/4.Google Scholar
  7. Emmer, M., (Ed.). (1993). The visual mind: Art and mathematics. Boston: The MIT Press.Google Scholar
  8. Emmer, M., (Ed.). (1999). Special issue on visual mathematics. Int. J. Shape Model. 5(1). Singapore: World Publishing.Google Scholar
  9. Emmer, M. (2004). Mathland: From flatland to hypersurfaces. Boston: Birkhauser.Google Scholar
  10. Emmer, M. (Ed.) (2005). The visual mind 2: Art and mathematics. Boston: The MIT Press.Google Scholar
  11. Emmer, M. (2006). Visibili armonie: arte cinema teatro matematica. Torino: Bollati Boringhieri.Google Scholar
  12. Field, M. and Golubitsky, M. (1992). Symmetry in Chaos: A search for pattern in mathematics, art and nature. Oxford: Oxford University Press.Google Scholar
  13. Forster, K. W., (Ed.). (2004). Metamorph: Focus (pp. 9–10). catalog, La Biennale di Venezia, Marsilio ed.Google Scholar
  14. Kemp, M. (2004). Intuizioni strutturali e pensiero metamorfico nell’arte, architettura e scienze. In K. W. Forster (Ed.), Metamorph: Focus (pp. 31–43). catalogue, La Biennale di Venezia, Marsilio (Ed.).Google Scholar
  15. Kline, M. (1953). Mathematics in Western culture. Oxford: Oxford University Press.Google Scholar
  16. Imperiale, A. (2001). New bidimensionality. Basel: Birkhauser.Google Scholar
  17. Mandelbrot, B. (1989). Fractals and an art for the sake of Science. ACM Siggraph 89, Leonardo, special issue, 21–24.Google Scholar
  18. Peitgen, H.-O. and Richter, P. H. (1986). The beauty of fractals. Berlin: Springer Verlag.CrossRefGoogle Scholar
  19. Penrose, R. (1989). The emperor’s new mind. Oxford: Oxford University Press.Google Scholar
  20. Poincaré, H. (1968). La Science et l’Hypothèse (pp. 75–76). Paris: Flammarion.Google Scholar
  21. Rashid, H. and Couture, L. A. (2004). Asymptote, the architecture of metamorph. In K.W. Forster (Ed.), Metamorph: Trajectories (pp. 9–13), catalogue, La Biennale di Venezia, Marsilio (Ed.).Google Scholar
  22. Venturi, L. (1970). La via dell’impressionismo: da Manet a Cezanne (pp. 268–269). Torino: Einaudi.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Rome 1RomeItaly

Personalised recommendations