Skip to main content

Evolution and Individual Development of Sponges: Regularities and Directions

  • Chapter
  • First Online:
The Comparative Embryology of Sponges
  • 1126 Accesses

Abstract

The origin and early evolution of multicellular animals is discussed in numerous works (see Nielsen 2008). This chapter briefly addresses the origin and early evolution of sponges, with the focus mainly on the morphological and developmental aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amano S, Hori I (2001) Metamorphosis of coeloblastula performed by multipotential larval flagellated cells in the calcareous sponge Leucosolenia laxa. Biol Bull 200:20–32

    Article  CAS  Google Scholar 

  • Batigina TB, Bragina EA, Ereskovsky AV, Ostrovsky AN (2006) Viviparity in plants and invertebrate animals. St. Petersburg University Press, St. Petersburg

    Google Scholar 

  • Bergquist PR, Glasgow K (1986) Developmental potential of ciliated cell of ceractinomorph sponge larvae. Exp Biol 45:111–122

    CAS  Google Scholar 

  • Bergquist PR, Green CG (1977) An ultrastructural study of settlement and metamorphosis in sponge larvae. Cah Biol Mar18:289–302

    Google Scholar 

  • Borojevic R (1969) Etude du développement et dé la différentiation cellulaire d’éponges calcaires Calcinées (genres Clathrina et Ascandra). Ann Embryol Morphol 2:15–36

    Google Scholar 

  • Borojevic R, Lévi C (1964) Etude au microscope électronique des cellules de l’éponge: Ophlitaspongia seriata (Grant), au cours de la réorganization après dissociation. Z Zellforsch 64:708–725

    Article  CAS  Google Scholar 

  • Boury-Esnault N, Jamieson BGM (1999) Porifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. 9: Pt A Progress in male gamete biology. Oxford/IBH Publishing, New Delhi/Calcutta

    Google Scholar 

  • Boury-Esnault N, Efremova SM, Bézak C, Vacelet J (1999) Reproduction of a hexactinellid sponge: first description of gastrulation by cellular delamination in the Porifera. Invert Rep Dev 35:187–201

    Google Scholar 

  • Boury-Esnault N, Ereskovsky AV, Bezac C, Tokina DB (2003) Larval development in Homoscleromorpha (Porifera, Demospongiae) first evidence of basal membrane in sponge larvae. Invert Biol 122:187–202

    Article  Google Scholar 

  • Buss L (1987) The Evolution of Individuality. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Bütchli O (1884) Bemerkungen zur Gastraea-Theorie. Morphol Jahrb 9:415–427

    Google Scholar 

  • Denis H, Mignot J-P (1994) L’origine des métazoaires. Méd Sci 10:551–563

    Google Scholar 

  • Dewell RA (2000) Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 243:35–74

    Article  Google Scholar 

  • Diaz JP (1979) Variations, différentiations et functions des categories cellulaires de la démosponge d’eaux saumatres, Suberites massa, Nardo, au cours du cycle biologique annuel et dans des conditions expérimentales. Thèse doct. Acad Montpellier

    Google Scholar 

  • Diaz JP, Connes R, Paris J (1975) Etude ultrastructurale de l’ovogenèse d’une Démosponge: Suberite massa Nardo. J Microsc 24:105–116

    Google Scholar 

  • Efremova SM (1972) Morphophysiological analysis of the development of freshwater sponges Ephydatia fluviatilis and Spongilla lacustris from the cells after Dissociation. In: Tokin BP (ed) Asexual reproduction, somatic embryogenesis and regeneration. Leningrad State University, Leningrad

    Google Scholar 

  • Efremova SM, Efremov VI (1979) Proliferation cellulaire dans l’embryogenese de Baikalospongia bacillifera. In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires. Colloques Internationaux. CNRS 291, Paris

    Google Scholar 

  • Ereskovsky AV (2003) Problems of coloniality, modularity, and Individuality in sponges and special features of their morphogeneses during growth and asexual reproduction. Russ J Mar Biol 19:46–56

    Article  Google Scholar 

  • Ereskovsky AV (2005) Comparative embryology of sponges (Porifera). St. Petersburg University Press, St. Petersburg

    Google Scholar 

  • Ereskovsky AV, Dondua AK (2006) The problem of germ layers in sponges (Porifera) and some issues concerning early metazoan evolution. Zool Anzeig 245:65–76

    Article  Google Scholar 

  • Ereskovsky AV, Gonobobleva EL (2000) New data on embryonic development of Halisarca dujardini Johnston, 1842 (Demospongiae: Halisarcida). Zoosystema 22:355–368

    Google Scholar 

  • Ereskovsky AV, Tokina DB (2007) Asexual reproduction in homoscleromorph sponges (Porifera; Homoscleromorpha). Mar Biol 151:425–434

    Article  Google Scholar 

  • Erwin DH (1993) The origin of metazoan development: a palaeobiological perspective. Biol J Linn Soc 50:255–274

    Article  Google Scholar 

  • Evans CW (1977) The ultrastructure of larvae from the marine sponge Halichondria moorei Bergquist (Porifera, Demospongiae). Cah Biol Mar 18:427–433

    Google Scholar 

  • Exposito JY, Cluzel C, Garrone R, Lethias C (2002) Evolution of collagens. Anat Rec 268:302–316

    Article  CAS  Google Scholar 

  • Gaino E, Burlando B (1990) Sponge cell motility: a model system for the study of morphogenetic processes. Boll Zool 57:109–118

    Google Scholar 

  • Gaino E, Manconi R, Pronzato R (1995) Organizational plasticity as a successful conservative tactics in sponges. Anim Biol 4:31–43

    Google Scholar 

  • Gallissian MF (1981) Etude ultrastructurale de l’ovogenèse chez quelques éponges calcaires (Porifera, Calcarea). Arch Zool Exp Gén 122:329–340

    Google Scholar 

  • Gallissian MF, Vacelet J (1992) Ultrastructure of the oocyte and embryo of the calcified sponge, Petrobiona massiliana (Porifera, Calcarea). Zoomorphology 112:133–141

    Article  Google Scholar 

  • Gilbert SF, Raunio AM (eds) (1997) Embryology. Constructing the organism. Sinauer, Sunderland, MA

    Google Scholar 

  • Gonobobleva EL, Ereskovsky AV (2004b) Polymorphism in free-swimming larvae of Halisarca dujardini (Demospongiae, Halisarcida). In: Pansini M, Pronzato R, Bavestrello G, Manconi R (eds) Sponge science in the new millennium. Boll Mus Ist Biol Univ Genova, 68

    Google Scholar 

  • Grasshoff M, Gudo M (2002) The origin of the Metazoa and the main evolutionary lineages of the animal kingdom: the Gallertoid hypothesis in the light of modern research. Senckenberg Lethaea 82:295–314

    Article  Google Scholar 

  • Haeckel E (1871) Ueber die sexuelle fortpflanzung und das naturliche system der Schwämme. Jena Zer 6:641–651

    Google Scholar 

  • Haeckel E (1874) Die Gastrae Theorie, die phylogenetische Classification des Thierreichs und die Homologie der Keimblatter. Jiena Ztschr Natur 8:1–55

    Google Scholar 

  • Hahn-Keser B, Stockem W (1997) Detection of distinct endocytotic and phagocytotic activities in epithelial cells (pinacocytes) of freshwater sponges (Porifera, Spongillidae). Zoomorphology 117:121–134

    Article  Google Scholar 

  • Humbert-David N, Garrone R (1993) Six-armed, tenascin-like protein extracted in the Porifera Oscarella tuberculata (Homoscleromorpha). Eur J Biochem 216:255–260

    Article  CAS  Google Scholar 

  • Ivanov AV (1968) The origin of the multicellular animals. Nauka, Leningrad

    Google Scholar 

  • Ivanov PP (1937) General and comparative embryology. Nauka, Moscow/Leningrad

    Google Scholar 

  • Ivanova LV, Semyonov VV (1997) Feeding habits of the larvae of sponges. In: Ereskovsky AV, Keupp H, Kohring HR (eds) Modern problems of Poriferan biology. Berliner Geowiss Abh, Freie University, Berlin

    Google Scholar 

  • Jägersten G (1955) On the early phylogeny of the Metazoa. The Bilaterogastraea-theory. Zool Bidr Uppsala 30:321–354

    Google Scholar 

  • Kaltenbach JC, Kuhns WJ, Simpson TL, Burger MM (1999) Intense concanavalin A staining and apoptosis of periferal flagellated cells in larvae of the marine sponge Microciona prolifera: significance in relation to morphogenesis. Biol Bull 197:271–273

    Article  CAS  Google Scholar 

  • Korotkova GP (1979) The origin and evolution of ontogenesis. Leningrad Univ Press, Leningrad

    Google Scholar 

  • Korotkova GP (1997) Regeneration in animals. St. Petersburg University Press, St. Petersburg

    Google Scholar 

  • Korotkova GP, Aizenshtadt TB (1976) A study of the oogenesis of the marine sponge Halisarca dujardini. Part 1. The origin of the oogonia and early stages of oocyte development. Tsitologiya 18:549–555

    Google Scholar 

  • Labat-Robert J, Robert L, Auger C, Lethias C, Garrone R (1981) Fibronectin-like protein in Porifera: its role in cell aggregation. Proc Natl Acad Sci USA 78:6261–6265

    Article  CAS  Google Scholar 

  • Lévi C, Lévi P (1976) Embryogenése de Chondrosia reniformis (Nardo), démosponge vipare, et transmission des bactéries symbiotiques. Ann Sci Nat Zool Biol Anim Ser 12(18):367–380

    Google Scholar 

  • Leys SP (1998) Fusion and cytoplasmic streaming are characteristics of a least two hexactinellids: examination of cultured tissue from Aphrocallistes vastus. In: Watanabe Y, Fusetani N (eds) Sponge sciences. Multidisciplinary perspectives. Springer, Tokyo

    Google Scholar 

  • Leys SP, Eerkes-Megrano D (2005) Gastrulation in Calcareous sponges: in search of Haeckel’s gastraea. Integr Comp Biol 45:342–351

    Article  Google Scholar 

  • Leys SP, Cronin TW, Degnan BM, Marshall JN (2002) Spectral sensitivity in a sponge larva. J Comp Physiol [A]. 188:199–202

    Google Scholar 

  • Leys SP, Cheung E, Boury-Esnaulty N (2006) Embryogenesis in the glass sponge Oopsacas minuta: formation of syncytia by fusion of blastomeres. Integr Comp Biol 46:104–117

    Article  Google Scholar 

  • Li CW, Chen JY, Hua TE (1998) Precambrian sponges with cellular structures. Science 279:879–882

    Article  CAS  Google Scholar 

  • Mackie GO, Singla CL (1983) Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Phil Trans Roy Soc Lond 301:365–400

    Article  Google Scholar 

  • Maldonado M (2006) The ecology of the sponge larva. Can J Zool 84:175–194

    Article  Google Scholar 

  • Meewis H (1938) Contribution à l’étude de l’embryogénèse des Myxospongiae: Halisarca lobularis (Schmidt). Arch Biol Liége 59:1–66

    Google Scholar 

  • Mehl D, Müller I, Müller WEG (1998) Molecular biological and paleontological evidence that Eumetazoa, including Porifera (Sponges), are monophyletic origin. In: Watanabe Y, Fusetani N (eds) Sponge sciences. Multidisciplinary perspectives. Springer, Tokyo

    Google Scholar 

  • Metschnikoff E (1886) Embryologische Studien an Medusen. Ein Beitrag zur Genealogie der Primitiv-Organe. Wien, Alfred Holder

    Google Scholar 

  • Mikhailov KV, Konstantinova AV, Nikitin MA, Troshin PV, Rusin LY, Lyubetsky VA, Panchin YV, Mylnikov AP, Moroz LL, Kumar S, Aleoshin VV (2009) The origin of Metazoa: a transition from temporal to spatial cell differentiation. Dedicated to the 60th year of A. A. Zakhvatkin’s Synzoospore hypothesis. BioEssays 31:758–768

    Article  CAS  Google Scholar 

  • Misevic GN, Burger MM (1982) The molecular basis of species specific cell-cell recognition in marine sponges, and a study on organogenesis during metamorphosis. In: Liss A (ed) Embryonic development. Part B: cellular aspects. Allan R. Liss, New York

    Google Scholar 

  • Misevic GN, Schlup V, Burger MM (1990) Larval metamorfosis of Microciona prolifera: evidens against the reversal of layers. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Müller WEG (1998) Molecular phylogeny of Eumetazoa: genes in sponges (Porifera) give evidence for monophyly of animals. In: Müller WEG (ed) Molecular evolution: evidence for monophyly of metazoa. Springer, Berlin

    Google Scholar 

  • Nielsen C (1998) Origin and evolution of animal life cycles. Biol Rev 73:125–155

    Article  Google Scholar 

  • Nielsen C (2008) Six major steps in animal evolution: are we derived sponge larvae? Evol Dev 10:241–257

    Article  Google Scholar 

  • Pahler S, Blumbach B, Müller I, Müller WEG (1998) A putitative multiadhesive basal lamina protein from the marine sponge Geodia cydonium: cloning of the cDNA encoding a fibronectin-, an SRCR- as well as a complement control protein module. J Exp Zool 282:332–343

    Article  CAS  Google Scholar 

  • Pedersen KJ (1991) Invited review: structure and composition of basement membranes and ather basal matrix systems in selected invertebrates. Acta Zool 72:181–201

    Article  Google Scholar 

  • Plotkin AS, Ereskovsky AV, Khalaman VV (1999) The analysis of modular organization of Porifera using Polymastia mammillaris (Müller, 1806) as a model. Zh Obshchei Biol 60:18–28

    Google Scholar 

  • Reitner J, Wörheide G (2002) Non-Lithistid Fossil Demospongiae – origins of their palaeobiodiversity and highlights in history of preservation. In: Hooper JNA, van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer/Plenum, New York

    Google Scholar 

  • Remane A (1963) The evolution of the Metazoa from colonial flagellates vs plasmodial ciliates. In: Dougherty CE (ed) The lower metazoa. Comparative biology and phylogeny. University of California Press, Berkeley, CA

    Google Scholar 

  • Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM (2008) Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol 18:1156–1161

    Article  CAS  Google Scholar 

  • Rieger RM (1994) Evolution of the “lower” Metazoa. In: Bengdson S (ed) Early life of Earth. Nobel symposium N 84. Columbia UP, New York

    Google Scholar 

  • Rieger R, Weyrer S (1998) The evolution of the lower Metazoa: evidence from the phenotype. In: Müller WEG (ed) Progress in molecular and subcellular biology, vol 21. Springer, Berlin

    Google Scholar 

  • Rigby JK (1986) Cambrian and Silurian sponges from Nothern Greenland. Rapp Groenlands Geol Unders 132:51–63

    Google Scholar 

  • Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang IF, Tidor B, Degnan BM, Oakley TH, Kosik KS (2007) A post-synaptic scaffold at the origin of the animal kingdom. PLoS ONE 2(6):e506

    Article  Google Scholar 

  • Salensky W (1886) Die Urform der Heteroplastiden. Biol Centralbl 6:514–525

    Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, New York

    Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  CAS  Google Scholar 

  • Vacelet J (1985) Coralline sponges and the evolution of Porifera. In: Conway Morris S, George JD, Gibson R, Platt H M (eds) The origins and relationships of lower invertebrates. The Systematics Association, vol 28. Clarendon Press, Oxford

    Google Scholar 

  • Vacelet J (2006) New carnivorous sponges (Porifera, Poecilosclerida) collected from manned submersibles in the deep Pacific. Zool J Linn Soc 148:553–584

    Article  Google Scholar 

  • Weissenfels N (1989) Biologie und microscopishe Anayomie der Süßswassershwämme (Spongillidae). Fisher, Stuttgart, New York

    Google Scholar 

  • Weyrer S, Rützler K, Rieger R (1999) Serotonin in Porifera? Evidence from developing Tedania ignis, the Caribbean fire sponge (Demospongiae). Mem Queensl Mus 44:659–665

    Google Scholar 

  • Willenz P (1982) Exocytose chez l’éponge d’eau douce Ephydatia fluviatilis et chez l’éponge marine Hemimycale columella. Biol Cell 45:23–34

    Google Scholar 

  • Willenz P (1984) Ultrastructural localization of lysosomal digestion in the freshwater sponge Ephydatia fluviatilis. J Ultrastruct Res 87:13–22

    Article  Google Scholar 

  • Willmer P (1990) Invertebrate relationships: patterns in animal evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wolpert L (1990) The evolution of development. Biol J Linn Soc 39:109–124

    Article  Google Scholar 

  • Wolpert L (1994) The evolutionary origin of development: cycles, pattering, privilege and continuity. Dev Suppl:79–84

    Google Scholar 

  • Zakhvatkin AA (1949) Comparative embryology of lower invertebrates: sources and pathways of the evolution of individual development of metazoans. Nauka, Moscow

    Google Scholar 

  • Zavarzin AA (1945) Essays of evolutionary histology of blood and connective tissues. Nauka, Moskow/Leningrad

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Ereskovsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ereskovsky, A.V. (2010). Evolution and Individual Development of Sponges: Regularities and Directions. In: The Comparative Embryology of Sponges. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8575-7_7

Download citation

Publish with us

Policies and ethics