Evolution and Individual Development of Sponges: Regularities and Directions

Chapter

Abstract

The origin and early evolution of multicellular animals is discussed in numerous works (see Nielsen 2008). This chapter briefly addresses the origin and early evolution of sponges, with the focus mainly on the morphological and developmental aspect.

Keywords

Ciliated Cell Lower Cambrian Multicellular Animal Aquiferous Module Larval Metamorphosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amano S, Hori I (2001) Metamorphosis of coeloblastula performed by multipotential larval flagellated cells in the calcareous sponge Leucosolenia laxa. Biol Bull 200:20–32CrossRefGoogle Scholar
  2. Batigina TB, Bragina EA, Ereskovsky AV, Ostrovsky AN (2006) Viviparity in plants and invertebrate animals. St. Petersburg University Press, St. PetersburgGoogle Scholar
  3. Bergquist PR, Glasgow K (1986) Developmental potential of ciliated cell of ceractinomorph sponge larvae. Exp Biol 45:111–122Google Scholar
  4. Bergquist PR, Green CG (1977) An ultrastructural study of settlement and metamorphosis in sponge larvae. Cah Biol Mar18:289–302Google Scholar
  5. Borojevic R (1969) Etude du développement et dé la différentiation cellulaire d’éponges calcaires Calcinées (genres Clathrina et Ascandra). Ann Embryol Morphol 2:15–36Google Scholar
  6. Borojevic R, Lévi C (1964) Etude au microscope électronique des cellules de l’éponge: Ophlitaspongia seriata (Grant), au cours de la réorganization après dissociation. Z Zellforsch 64:708–725CrossRefGoogle Scholar
  7. Boury-Esnault N, Jamieson BGM (1999) Porifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. 9: Pt A Progress in male gamete biology. Oxford/IBH Publishing, New Delhi/CalcuttaGoogle Scholar
  8. Boury-Esnault N, Efremova SM, Bézak C, Vacelet J (1999) Reproduction of a hexactinellid sponge: first description of gastrulation by cellular delamination in the Porifera. Invert Rep Dev 35:187–201Google Scholar
  9. Boury-Esnault N, Ereskovsky AV, Bezac C, Tokina DB (2003) Larval development in Homoscleromorpha (Porifera, Demospongiae) first evidence of basal membrane in sponge larvae. Invert Biol 122:187–202CrossRefGoogle Scholar
  10. Buss L (1987) The Evolution of Individuality. Princeton University Press, Princeton, NJGoogle Scholar
  11. Bütchli O (1884) Bemerkungen zur Gastraea-Theorie. Morphol Jahrb 9:415–427Google Scholar
  12. Denis H, Mignot J-P (1994) L’origine des métazoaires. Méd Sci 10:551–563Google Scholar
  13. Dewell RA (2000) Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 243:35–74CrossRefGoogle Scholar
  14. Diaz JP (1979) Variations, différentiations et functions des categories cellulaires de la démosponge d’eaux saumatres, Suberites massa, Nardo, au cours du cycle biologique annuel et dans des conditions expérimentales. Thèse doct. Acad MontpellierGoogle Scholar
  15. Diaz JP, Connes R, Paris J (1975) Etude ultrastructurale de l’ovogenèse d’une Démosponge: Suberite massa Nardo. J Microsc 24:105–116Google Scholar
  16. Efremova SM (1972) Morphophysiological analysis of the development of freshwater sponges Ephydatia fluviatilis and Spongilla lacustris from the cells after Dissociation. In: Tokin BP (ed) Asexual reproduction, somatic embryogenesis and regeneration. Leningrad State University, LeningradGoogle Scholar
  17. Efremova SM, Efremov VI (1979) Proliferation cellulaire dans l’embryogenese de Baikalospongia bacillifera. In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires. Colloques Internationaux. CNRS 291, ParisGoogle Scholar
  18. Ereskovsky AV (2003) Problems of coloniality, modularity, and Individuality in sponges and special features of their morphogeneses during growth and asexual reproduction. Russ J Mar Biol 19:46–56CrossRefGoogle Scholar
  19. Ereskovsky AV (2005) Comparative embryology of sponges (Porifera). St. Petersburg University Press, St. PetersburgGoogle Scholar
  20. Ereskovsky AV, Dondua AK (2006) The problem of germ layers in sponges (Porifera) and some issues concerning early metazoan evolution. Zool Anzeig 245:65–76CrossRefGoogle Scholar
  21. Ereskovsky AV, Gonobobleva EL (2000) New data on embryonic development of Halisarca dujardini Johnston, 1842 (Demospongiae: Halisarcida). Zoosystema 22:355–368Google Scholar
  22. Ereskovsky AV, Tokina DB (2007) Asexual reproduction in homoscleromorph sponges (Porifera; Homoscleromorpha). Mar Biol 151:425–434CrossRefGoogle Scholar
  23. Erwin DH (1993) The origin of metazoan development: a palaeobiological perspective. Biol J Linn Soc 50:255–274CrossRefGoogle Scholar
  24. Evans CW (1977) The ultrastructure of larvae from the marine sponge Halichondria moorei Bergquist (Porifera, Demospongiae). Cah Biol Mar 18:427–433Google Scholar
  25. Exposito JY, Cluzel C, Garrone R, Lethias C (2002) Evolution of collagens. Anat Rec 268:302–316CrossRefGoogle Scholar
  26. Gaino E, Burlando B (1990) Sponge cell motility: a model system for the study of morphogenetic processes. Boll Zool 57:109–118Google Scholar
  27. Gaino E, Manconi R, Pronzato R (1995) Organizational plasticity as a successful conservative tactics in sponges. Anim Biol 4:31–43Google Scholar
  28. Gallissian MF (1981) Etude ultrastructurale de l’ovogenèse chez quelques éponges calcaires (Porifera, Calcarea). Arch Zool Exp Gén 122:329–340Google Scholar
  29. Gallissian MF, Vacelet J (1992) Ultrastructure of the oocyte and embryo of the calcified sponge, Petrobiona massiliana (Porifera, Calcarea). Zoomorphology 112:133–141CrossRefGoogle Scholar
  30. Gilbert SF, Raunio AM (eds) (1997) Embryology. Constructing the organism. Sinauer, Sunderland, MAGoogle Scholar
  31. Gonobobleva EL, Ereskovsky AV (2004b) Polymorphism in free-swimming larvae of Halisarca dujardini (Demospongiae, Halisarcida). In: Pansini M, Pronzato R, Bavestrello G, Manconi R (eds) Sponge science in the new millennium. Boll Mus Ist Biol Univ Genova, 68Google Scholar
  32. Grasshoff M, Gudo M (2002) The origin of the Metazoa and the main evolutionary lineages of the animal kingdom: the Gallertoid hypothesis in the light of modern research. Senckenberg Lethaea 82:295–314CrossRefGoogle Scholar
  33. Haeckel E (1871) Ueber die sexuelle fortpflanzung und das naturliche system der Schwämme. Jena Zer 6:641–651Google Scholar
  34. Haeckel E (1874) Die Gastrae Theorie, die phylogenetische Classification des Thierreichs und die Homologie der Keimblatter. Jiena Ztschr Natur 8:1–55Google Scholar
  35. Hahn-Keser B, Stockem W (1997) Detection of distinct endocytotic and phagocytotic activities in epithelial cells (pinacocytes) of freshwater sponges (Porifera, Spongillidae). Zoomorphology 117:121–134CrossRefGoogle Scholar
  36. Humbert-David N, Garrone R (1993) Six-armed, tenascin-like protein extracted in the Porifera Oscarella tuberculata (Homoscleromorpha). Eur J Biochem 216:255–260CrossRefGoogle Scholar
  37. Ivanov AV (1968) The origin of the multicellular animals. Nauka, LeningradGoogle Scholar
  38. Ivanov PP (1937) General and comparative embryology. Nauka, Moscow/LeningradGoogle Scholar
  39. Ivanova LV, Semyonov VV (1997) Feeding habits of the larvae of sponges. In: Ereskovsky AV, Keupp H, Kohring HR (eds) Modern problems of Poriferan biology. Berliner Geowiss Abh, Freie University, BerlinGoogle Scholar
  40. Jägersten G (1955) On the early phylogeny of the Metazoa. The Bilaterogastraea-theory. Zool Bidr Uppsala 30:321–354Google Scholar
  41. Kaltenbach JC, Kuhns WJ, Simpson TL, Burger MM (1999) Intense concanavalin A staining and apoptosis of periferal flagellated cells in larvae of the marine sponge Microciona prolifera: significance in relation to morphogenesis. Biol Bull 197:271–273CrossRefGoogle Scholar
  42. Korotkova GP (1979) The origin and evolution of ontogenesis. Leningrad Univ Press, LeningradGoogle Scholar
  43. Korotkova GP (1997) Regeneration in animals. St. Petersburg University Press, St. PetersburgGoogle Scholar
  44. Korotkova GP, Aizenshtadt TB (1976) A study of the oogenesis of the marine sponge Halisarca dujardini. Part 1. The origin of the oogonia and early stages of oocyte development. Tsitologiya 18:549–555Google Scholar
  45. Labat-Robert J, Robert L, Auger C, Lethias C, Garrone R (1981) Fibronectin-like protein in Porifera: its role in cell aggregation. Proc Natl Acad Sci USA 78:6261–6265CrossRefGoogle Scholar
  46. Lévi C, Lévi P (1976) Embryogenése de Chondrosia reniformis (Nardo), démosponge vipare, et transmission des bactéries symbiotiques. Ann Sci Nat Zool Biol Anim Ser 12(18):367–380Google Scholar
  47. Leys SP (1998) Fusion and cytoplasmic streaming are characteristics of a least two hexactinellids: examination of cultured tissue from Aphrocallistes vastus. In: Watanabe Y, Fusetani N (eds) Sponge sciences. Multidisciplinary perspectives. Springer, TokyoGoogle Scholar
  48. Leys SP, Eerkes-Megrano D (2005) Gastrulation in Calcareous sponges: in search of Haeckel’s gastraea. Integr Comp Biol 45:342–351CrossRefGoogle Scholar
  49. Leys SP, Cronin TW, Degnan BM, Marshall JN (2002) Spectral sensitivity in a sponge larva. J Comp Physiol [A]. 188:199–202Google Scholar
  50. Leys SP, Cheung E, Boury-Esnaulty N (2006) Embryogenesis in the glass sponge Oopsacas minuta: formation of syncytia by fusion of blastomeres. Integr Comp Biol 46:104–117CrossRefGoogle Scholar
  51. Li CW, Chen JY, Hua TE (1998) Precambrian sponges with cellular structures. Science 279:879–882CrossRefGoogle Scholar
  52. Mackie GO, Singla CL (1983) Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Phil Trans Roy Soc Lond 301:365–400CrossRefGoogle Scholar
  53. Maldonado M (2006) The ecology of the sponge larva. Can J Zool 84:175–194CrossRefGoogle Scholar
  54. Meewis H (1938) Contribution à l’étude de l’embryogénèse des Myxospongiae: Halisarca lobularis (Schmidt). Arch Biol Liége 59:1–66Google Scholar
  55. Mehl D, Müller I, Müller WEG (1998) Molecular biological and paleontological evidence that Eumetazoa, including Porifera (Sponges), are monophyletic origin. In: Watanabe Y, Fusetani N (eds) Sponge sciences. Multidisciplinary perspectives. Springer, TokyoGoogle Scholar
  56. Metschnikoff E (1886) Embryologische Studien an Medusen. Ein Beitrag zur Genealogie der Primitiv-Organe. Wien, Alfred HolderGoogle Scholar
  57. Mikhailov KV, Konstantinova AV, Nikitin MA, Troshin PV, Rusin LY, Lyubetsky VA, Panchin YV, Mylnikov AP, Moroz LL, Kumar S, Aleoshin VV (2009) The origin of Metazoa: a transition from temporal to spatial cell differentiation. Dedicated to the 60th year of A. A. Zakhvatkin’s Synzoospore hypothesis. BioEssays 31:758–768CrossRefGoogle Scholar
  58. Misevic GN, Burger MM (1982) The molecular basis of species specific cell-cell recognition in marine sponges, and a study on organogenesis during metamorphosis. In: Liss A (ed) Embryonic development. Part B: cellular aspects. Allan R. Liss, New YorkGoogle Scholar
  59. Misevic GN, Schlup V, Burger MM (1990) Larval metamorfosis of Microciona prolifera: evidens against the reversal of layers. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DCGoogle Scholar
  60. Müller WEG (1998) Molecular phylogeny of Eumetazoa: genes in sponges (Porifera) give evidence for monophyly of animals. In: Müller WEG (ed) Molecular evolution: evidence for monophyly of metazoa. Springer, BerlinGoogle Scholar
  61. Nielsen C (1998) Origin and evolution of animal life cycles. Biol Rev 73:125–155CrossRefGoogle Scholar
  62. Nielsen C (2008) Six major steps in animal evolution: are we derived sponge larvae? Evol Dev 10:241–257CrossRefGoogle Scholar
  63. Pahler S, Blumbach B, Müller I, Müller WEG (1998) A putitative multiadhesive basal lamina protein from the marine sponge Geodia cydonium: cloning of the cDNA encoding a fibronectin-, an SRCR- as well as a complement control protein module. J Exp Zool 282:332–343CrossRefGoogle Scholar
  64. Pedersen KJ (1991) Invited review: structure and composition of basement membranes and ather basal matrix systems in selected invertebrates. Acta Zool 72:181–201CrossRefGoogle Scholar
  65. Plotkin AS, Ereskovsky AV, Khalaman VV (1999) The analysis of modular organization of Porifera using Polymastia mammillaris (Müller, 1806) as a model. Zh Obshchei Biol 60:18–28Google Scholar
  66. Reitner J, Wörheide G (2002) Non-Lithistid Fossil Demospongiae – origins of their palaeobiodiversity and highlights in history of preservation. In: Hooper JNA, van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer/Plenum, New YorkGoogle Scholar
  67. Remane A (1963) The evolution of the Metazoa from colonial flagellates vs plasmodial ciliates. In: Dougherty CE (ed) The lower metazoa. Comparative biology and phylogeny. University of California Press, Berkeley, CAGoogle Scholar
  68. Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM (2008) Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol 18:1156–1161CrossRefGoogle Scholar
  69. Rieger RM (1994) Evolution of the “lower” Metazoa. In: Bengdson S (ed) Early life of Earth. Nobel symposium N 84. Columbia UP, New YorkGoogle Scholar
  70. Rieger R, Weyrer S (1998) The evolution of the lower Metazoa: evidence from the phenotype. In: Müller WEG (ed) Progress in molecular and subcellular biology, vol 21. Springer, BerlinGoogle Scholar
  71. Rigby JK (1986) Cambrian and Silurian sponges from Nothern Greenland. Rapp Groenlands Geol Unders 132:51–63Google Scholar
  72. Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang IF, Tidor B, Degnan BM, Oakley TH, Kosik KS (2007) A post-synaptic scaffold at the origin of the animal kingdom. PLoS ONE 2(6):e506CrossRefGoogle Scholar
  73. Salensky W (1886) Die Urform der Heteroplastiden. Biol Centralbl 6:514–525Google Scholar
  74. Simpson TL (1984) The cell biology of sponges. Springer, New YorkGoogle Scholar
  75. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347CrossRefGoogle Scholar
  76. Vacelet J (1985) Coralline sponges and the evolution of Porifera. In: Conway Morris S, George JD, Gibson R, Platt H M (eds) The origins and relationships of lower invertebrates. The Systematics Association, vol 28. Clarendon Press, OxfordGoogle Scholar
  77. Vacelet J (2006) New carnivorous sponges (Porifera, Poecilosclerida) collected from manned submersibles in the deep Pacific. Zool J Linn Soc 148:553–584CrossRefGoogle Scholar
  78. Weissenfels N (1989) Biologie und microscopishe Anayomie der Süßswassershwämme (Spongillidae). Fisher, Stuttgart, New YorkGoogle Scholar
  79. Weyrer S, Rützler K, Rieger R (1999) Serotonin in Porifera? Evidence from developing Tedania ignis, the Caribbean fire sponge (Demospongiae). Mem Queensl Mus 44:659–665Google Scholar
  80. Willenz P (1982) Exocytose chez l’éponge d’eau douce Ephydatia fluviatilis et chez l’éponge marine Hemimycale columella. Biol Cell 45:23–34Google Scholar
  81. Willenz P (1984) Ultrastructural localization of lysosomal digestion in the freshwater sponge Ephydatia fluviatilis. J Ultrastruct Res 87:13–22CrossRefGoogle Scholar
  82. Willmer P (1990) Invertebrate relationships: patterns in animal evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  83. Wolpert L (1990) The evolution of development. Biol J Linn Soc 39:109–124CrossRefGoogle Scholar
  84. Wolpert L (1994) The evolutionary origin of development: cycles, pattering, privilege and continuity. Dev Suppl:79–84Google Scholar
  85. Zakhvatkin AA (1949) Comparative embryology of lower invertebrates: sources and pathways of the evolution of individual development of metazoans. Nauka, MoscowGoogle Scholar
  86. Zavarzin AA (1945) Essays of evolutionary histology of blood and connective tissues. Nauka, Moskow/LeningradGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Embryology Biological FacultySaint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations