Skip to main content

Network Cities: A Complexity-Network Approach to Urban Dynamics and Development

Part of the GeoJournal Library book series (GEJL,volume 99)

Abstract

The aim of this proposed research is to develop an urban simulation model (USM) specifically designed to study the evolution and dynamics of systems of cities. It is innovative in three respects: First, in its structure – the proposed model is built as a superposition of two types of models; the first is an Agent Based Urban Simulation Model (ABUSM) that simulates the movement and interaction of agents in the urban space and the second is a network model that simulates the resultant urban network as it evolves. Secondly, it is innovative in the specific behavior of its agents – urban agents in our model act locally (as usual) but in order to do so, they perceive the city globally, i.e. they “think globally and act locally”. In our model, the local activities and interactions of agents give rise to the global urban structure and network that in turn affects the agents’ cognition, behavior, movement, and action in the city and so on in circular causality. The third aspect of innovation is connected with the specific urban phenomena it simulates – the vast majority of USM simulate the growth and expansion of urban systems but few simulate the reverse process of re-urbanization and gentrification; our model simultaneously captures the two processes and the interplay between them.

Cities are complex systems by their nature. They have originally emerged, and are still developing, out of the interactions between many agents that are located and move in space and time. These interactions result in many links that create complex networks which form the city. In the last two decades CA and AB USM have provided the main approaches to studying the dynamics of cities as complex self-organizing systems. In the last few years, models based on the new science of networks have been introduced as well. This research direction is new in the conjunction it suggests between traditional network analysis (e.g. graph theory) and complexity theory. We introduce a new dynamic model for city development, based on the evolution and structure of urban networks.

Keywords

  • Urban simulation model
  • Urban interactions
  • Rank size distribution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-8572-6_5
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-8572-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10

References

  • Albert, R., Jeong, H. & Barabási, A.L. (1999). Diameter of the World-Wide Web. Nature, 401(6749), 130–131

    CrossRef  Google Scholar 

  • Albert, R., Jeong, H. & Barabási, A.L. (2000). Error and attack tolerance of complex networks. Nature, 406, 378–382

    CrossRef  Google Scholar 

  • Andersson, C., Frenken, K. & Hellervik, A. (2006). A complex network approach to urban growth. Environment and Planning A, 38, 1941–1964

    CrossRef  Google Scholar 

  • Andersson, C., Hellervik, A. & Lindgren, K. (2005). A spatial network explanation for a hierarchy of urban power laws. Physica A, 345, 227–244

    Google Scholar 

  • Auerbach, F. (1913). Das gesetz der bevolkerungskoncentration, Petermanns Geographische Mitteilungen, 59, 74–76

    Google Scholar 

  • Barabási, A.L. & Albert, R (1999). Emergence of scaling in random networks. Science, 286 (5439), 509–512

    CrossRef  Google Scholar 

  • Barthélémy, M., Buldyrev, S.V., Havlin, S. & Stanley, H.E. (2000). Multifractal properties of the random resistor network. Physical Review E (Rapid Comm.), 61, R3283

    CrossRef  Google Scholar 

  • Batty, M. (2005). Cities and complexity. (Cambridge, MA: MIT Press)

    Google Scholar 

  • Batty, M. (2006). Rank clocks. Nature, 444, 592–596

    Google Scholar 

  • Batty, M. & Longley, P. (1994). Fractal cities: a geometry of form and function. (London: Academic Press)

    Google Scholar 

  • Batty, M., Xie, Y. & Sun, Z. (1999). Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban systems, 23 (3), 205–233

    CrossRef  Google Scholar 

  • Benenson, I. & Torrens, P. (2004). Geosimulation: automata-based modeling of urban phenomena. (West Sussex, England: John Wiley and Sons Ltd)

    CrossRef  Google Scholar 

  • Benguigui, L. & Blumenfeld-Lieberthal, E. (2006a). A new classification of city size distributions. Computers, Environment and Urban Systems, 31 (6), 648–666

    CrossRef  Google Scholar 

  • Benguigui, L. & Blumenfeld-Lieberthal, E. (2006b). From lognormal distribution to power law: a new classification of the size distributions. International Journal of Modern Physics C, 17(10), 1429–1436

    CrossRef  Google Scholar 

  • Benguigui, L. & Blumenfeld-Lieberthal, E. (2007). A dynamic model for the city size distribution beyond Zipf’s Law. Physica A, 384, 613–627

    CrossRef  Google Scholar 

  • Berry, B.J.L. (1967). Geography of market centers and retail distribution. (Englewood Cliffs, NJ: Prentice-Hall)

    Google Scholar 

  • Blank, A. & Solomon, S. (2000). Power laws in cities population, financial markets and internet sites (scaling in systems with a variable number of components). Physica A, 287 (1–2), 279–288

    CrossRef  Google Scholar 

  • Callaway, D.S., Newman, M., Strogatz, S.H. & Watts D.J. (2000). Network robustness and fragility: percolation on random graphs. Physical Review Letters, 85, 5468–5471

    CrossRef  Google Scholar 

  • Cameron, T.A. (1990). One stage structural models to explain city size. Journal of Urban Economics, 27, 294–307

    CrossRef  Google Scholar 

  • Cohen, R., Erez1, K., Ben-Avraham, D. & Havlin, S. (2000). Resilience of the Internet to random breakdowns. Physical Review Letters, 85, 4626–4628

    CrossRef  Google Scholar 

  • Cohen, R., Erez1, K., Ben-Avraham, D. & Havlin, S. (2001). Breakdown of the Internet under intentional attack. Physical Review Letters, 86, 3682–3685

    CrossRef  Google Scholar 

  • Cohen, R. & Havlin, S. (2003). Scale-free networks are ultrasmall. Physical Review Letters, 90, 058701

    CrossRef  Google Scholar 

  • Couclelis, H. (1997). From cellular automata to urban models: new principles for model development and implementation. Environment and Planning B, 24(2), 165–174

    CrossRef  Google Scholar 

  • Gabaix, X. (1999). Zipf’s law for cities – An explanation. Quarterly Journal of Economics, 114, 739–767

    CrossRef  Google Scholar 

  • Gallos, L.K., Cohen, R., Argyrakis, P., Bunde, A. & Havlin, S. (2005). Stability and topology of scale-free networks under attack and defense strategies. Physical Review Letters, 94, 188701

    CrossRef  Google Scholar 

  • Girvan, M. & Newman, M. (2002). Community structure in social and biological networks. PNAS, 99, 8271–8276

    CrossRef  Google Scholar 

  • Grinstein, G. & Linsker, R. (2005). Synchronous neural activity in scale-free network models versus random network models. PNAS, 102 (28), 9948–9953

    CrossRef  Google Scholar 

  • Hu, M.B., Wang, W.X., Jiang, R., Wu, Q.S., Wang, B. H. & Wu, Y.H. (2006). Urban traffic dynamics: a scale-free network perspective. arXiv:physics/0606086v1 [physics.soc-ph]

    Google Scholar 

  • Jeong, H., Neda, Z. & Barabási, A.L. (2003). Measuring preferential attachment in evolving networks. Europhysics Letters, 61, 567–572

    CrossRef  Google Scholar 

  • Jeong, H., Tombora, B., Albert, R., Oltvai Z.N. & Barabási, A.L. (2000). The large-scale organization of metabolic networks. Nature, 407, 651–654

    CrossRef  Google Scholar 

  • Jiang, B. & Claramunt, C. (2004). Topological analysis of urban street networks. Environment and Planning B, 31(1), 151–162

    CrossRef  Google Scholar 

  • Krugman, P. (1996). The self-organizing economy. (Cambridge: Wiley-Blackwell)

    Google Scholar 

  • Liljerosa, F., Edling, C.R. & Nunes Amarald, L.A. (2003). Sexual networks: implications for the transmission of sexually transmitted infections. Microbes and Infection, 5(2), 189–196

    CrossRef  Google Scholar 

  • Mandelbrot, B.B., (1983). The fractal geometry of nature. (New York: W.H. Freeman)

    Google Scholar 

  • Newman, M., Barabási, A.L. & Watts, D.J. (2006). The structure and dynamics of networks. (Princeton, NJ: Princeton University Press)

    Google Scholar 

  • Newman, M., Watts, D.J. & Strogatz, S.H. (2002). Random graph models of social networks. PNAS, 99, 2566–2572

    CrossRef  Google Scholar 

  • Pastor-Satorras, R., Väzquez, A. & Vespignani, A. (2001). Dynamical and correlation properties of the Internet. Physical Review Letters, 87, 258701

    CrossRef  Google Scholar 

  • Paul, G., Sreenivasan, S., Havlin, S. & Stanley, H.E. (2006). Optimization of network robustness to random breakdowns. Physica A, 370, 854–862

    CrossRef  Google Scholar 

  • Porta, S., Crucittib, P. & Latora, V. (2006). The network analysis of urban streets: a dual approach. Physica A, 369, 853–866

    CrossRef  Google Scholar 

  • Portugali, J. (1997). Self-organized cities. Futures, 29(4/5), 353–380

    CrossRef  Google Scholar 

  • Portugali, J. (2000). Self-Organization and the City. (Berlin: Springer)

    CrossRef  Google Scholar 

  • Portugali, J. (2002). The seven basic propositions of SIRN (Synergetic Inter-Representation Networks). Nonlinear Phenomena in Complex Systems, 5, 428–444

    Google Scholar 

  • Portugali, J. (2004). Toward a cognitive approach to urban dynamics. Environment and Planning B, 31(4), 589–613

    CrossRef  Google Scholar 

  • Portugali, J. (2009). Self-organization and the city. In R.A. Meyers (Ed.), Encyclopedia of complexity and systems (pp. 759–761). (Berlin: Springer)

    Google Scholar 

  • Pumain, D. (2004). Scaling laws and urban systems, Working papers of the Santa Fe Institute, [electronic version]. Retrieved from http://www.santafe.edu/research/publications/working-papers/04-02-002.pdf

  • Pumain, D. (2006). Alternative explanations of hierarchical differentiation in urban systems. In D. Punain (Ed.), Hierarchy in natural and social sciences (pp. 169–222). (Berlin: Springer)

    CrossRef  Google Scholar 

  • Reilly, W.J. (1931). The law of retail gravitation. New York: Knickerbocker Press

    Google Scholar 

  • Richard, J. & Haggett, P. (1967). Models in geography: the second Madingley lectures for 1965. (London: Methuen & Co. Ltd.)

    Google Scholar 

  • Silva, E.A. & Clarke, K.C. (2005). Complexity, emergence and cellular urban models: lessons learned from applying SLEUTH to two Portuguese metropolitan areas. European Planning Studies, 13(1), 93–115

    CrossRef  Google Scholar 

  • Simon, H. (1955). On a class of Skew distributions. Biometrika, 42, 425–440

    Google Scholar 

  • Solé, R.V. & Montoya, J.M. (2001). Complexity and fragility in ecological networks. Proceedings of the Royal Society B- Biological Sciences, 268(1480), 2039–2045

    CrossRef  Google Scholar 

  • Tanizawa, T., Paul, G., Havlin, S. & Stanley, H.E. (2006). Optimization of the robustness of multimodal networks. Physical Review E, 74, 016125

    CrossRef  Google Scholar 

  • Watts, D.J., Dodds, P.S. & Newman, M. (2002). Identity and search in social networks. Science, 296(5571), 1302–1305

    CrossRef  Google Scholar 

  • Watts, D.J. & Strogatz, S.H. (1998). Collective dynamics of 'small-world' networks. Nature, 393 (6684), 409–410

    CrossRef  Google Scholar 

  • White, R. & Engelen, G. (1993). Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns, Environment and Planning A, 25, 1175–1199

    CrossRef  Google Scholar 

  • Wilson, A.G. (1967). A statistical theory of spatial distribution models. Transportation Research, 1, 253–269

    Google Scholar 

  • Zipf, G.K. (1941). National unity and disunity. (Bsloomington Indiana: The Principia Press)

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. L. Benguigui for stimulating conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efrat Blumenfeld-Lieberthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Blumenfeld-Lieberthal, E., Portugali, J. (2010). Network Cities: A Complexity-Network Approach to Urban Dynamics and Development. In: Jiang, B., Yao, X. (eds) Geospatial Analysis and Modelling of Urban Structure and Dynamics. GeoJournal Library, vol 99. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8572-6_5

Download citation