Physiological Responses of Seaweeds to Elevated Atmospheric CO2 Concentrations

Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 15)

Abstract

The atmospheric CO2 concentration has been rising since the industrial revolution, and will continue to rise from the present 375 to about 1,000 ppmv by 2100 (Pearson and Palmer, 2000), increasing dissolution of CO2 from the air and altering the carbonate system of Surface Ocean (Stumm and Morgan, 1996; Takahashi et al., 1997; Riebesell et al., 2007). For example, an increase in atmospheric CO2 from 330 to 1,000 ppmv will lead to an increase in CO2 concentration from 12.69 to 38.46 μM in seawater (at 15°C and total alkalinity of 2.47 eq m−3) and an increase in the concentration of dissolved inorganic carbon (DIC, i.e., CO2(aq), HCO3, and CO32−) from 2.237 to 2.412 mM, with a concurrent decrease in the pH of the surface seawater from 8.168 to 7.735 (Raven, 1991; Stumm and Morgan, 1996). Increasing atmospheric CO2 and its associated changes in the carbonate system can influence the physiology and ecology of seaweeds.

References

  1. Andría, J.R., Pérez-Lloréns, J. and Vergara, J.J. (1999a) Mechanisms of inorganic carbon acquisition in Gracilaria gaditana nom. prov. (Rhodophyta). Planta 208: 561–573.Google Scholar
  2. Andría, J.R., Vergara, J.J. and Perez-Llorens, J.L. (1999b) Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cadiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur. J. Phycol. 34: 497–504.CrossRefGoogle Scholar
  3. Andría, J.R., Brun, F.G., Pérez-Lloréns, J.L. and Vergara, J.J. (2001) Acclimation responses of Gracilaria sp. (Rhodophyta) and Enteromorpha intestinalis (Chlorophyta) to changes in the external inorganic carbon concentration. Bot. Mar. 44: 361–370.CrossRefGoogle Scholar
  4. Axelsson, L. and Uusitalo, J. (1988) Carbon acquisition strategies for marine macroalgae. I. Utilization of proton exchanges visualized during photosynthesis in a closed system. Mar. Biol. 97: 295–300.CrossRefGoogle Scholar
  5. Axelsson, L., Ryberg, H. and Beer, S. (1995) Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant Cell Environ. 18: 439–445.CrossRefGoogle Scholar
  6. Beardall, J., Beer, S. and Raven, J.A. (1998) Biodiversity of marine plants in an arc of climate change: some predictions based on physiological performance. Bot. Mar. 4: 113–123.Google Scholar
  7. Beer, S. (1994) Mechanisms of inorganic carbon acquisition in marine maroalgae (with reference to the Chlorophyta). Prog. Phycol. Res. 10: 179–207.Google Scholar
  8. Beer, S. and Koch, E. (1996) Photosynthesis of seagrasses and marine macroalgae in globally changing CO2 environments. Mar. Ecol. Prog. Ser. 141: 199–204.CrossRefGoogle Scholar
  9. Björk, M., Haglund, K., Ramazanov, Z. and Pedersen, M. (1993) Inducible mechanism for HCO3 utilization and repression of photorespiration in protoplasts and thallus of three species of Ulva (Chlorophyta). J. Phycol. 29: 166–173.CrossRefGoogle Scholar
  10. Brewer, P.G. (1997) Ocean chemistry of the fossil fuel CO2 signal: the haline signal of “business as usual”. Geophys. Res. Lett. 24: 1367–1369.CrossRefGoogle Scholar
  11. Caldeira, K. and Wickett, M.E. (2003) Anthropogenic carbon and ocean pH. Nature 425: 365.PubMedCrossRefGoogle Scholar
  12. Choo, K.S., Snoeijs, P. and Pedersen, M. (2002) Uptake of inorganic carbon by Cladophora glomerata (Chlorophyta) from the Baltic Sea. J. Phycol. 38: 493–502.Google Scholar
  13. Drechsler, Z., Sharkia, R., Cabantchik, Z.I. and Beer, S. (1993) Bicarbonate uptake in the marine maxroalga Ulva sp. is inhibited by classical probes of anion exchange by red blood cells. Planta 191: 34–40.CrossRefGoogle Scholar
  14. Drechsler, Z., Sharkia, R., Cabantchik, Z.I. and Beer, S. (1994) The relationship of arginine groups to photosynthetic HCO3- uptake in Ulva sp. mediated by a putative anion exchanger. Planta 194: 250–255.CrossRefGoogle Scholar
  15. Gao, K. and Aruga, Y. (1987) Preliminary studies on the photosynthesis and respiration of Porphyra yezoensis under emersed condition. J. Tokyo Univ. Fish. 47: 51–65.Google Scholar
  16. Gao, K. and McKinley, K.R. (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol. 6: 45–60.CrossRefGoogle Scholar
  17. Gao, K., Aruga, Y., Asada, K., Ishihara, T., Akano, T. and Kiyohara, M. (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J. Appl. Phycol. 3: 356–362.Google Scholar
  18. Gao, K., Aruga, Y., Asada, K. and Kiyohara, M. (1993a) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J. Appl. Phycol. 5: 563–71.CrossRefGoogle Scholar
  19. Gao, K., Aruga, Y., Asada, K., Ishihara, T., Akano, T. and Kiyohara, M. (1993b) Calcification in the articulated coralli alga Corallina pilulifera, with special reference to the effect of elevated atmospheric CO2. Mar. Biol. 117: 129–132.CrossRefGoogle Scholar
  20. Gao, K., Ji, Y. and Aruga, Y. (1999) Relationship of CO2 concentrations to photosynthesis of intertidal macrioalgae during emersion. Hydrobiologia 398/399: 355–359.CrossRefGoogle Scholar
  21. Garcìa-Sánchez, M.J., Fernández, J.A. and Niell, F.X. (1994) Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194: 55–61.CrossRefGoogle Scholar
  22. Gattuso, J.-P. and Buddemeier, R.W. (2000) Calcification and CO2. Nature 407: 311–312.PubMedCrossRefGoogle Scholar
  23. Gattuso, J.-P., Frankignoulle, M. and Bourge, I. (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob. Planet Change 18: 37–46.CrossRefGoogle Scholar
  24. Gattuso, J.-P., Allemand, D. and Frankignoulle, M. (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am. Zool. 39: 160–183.Google Scholar
  25. Giordano, M., Beardall, J. and Raven, J.A. (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56: 99–131.PubMedCrossRefGoogle Scholar
  26. Gordillo, F.J.L., Niell, F.X. and Figueroa, F.L. (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213: 64–70.PubMedCrossRefGoogle Scholar
  27. Gordillo, F.J.L., Figueroa, F.L. and Niell, F.X. (2003) Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218: 315–322.PubMedCrossRefGoogle Scholar
  28. Iglesias-Rodriguez, M.D., Halloran, P.R., Rickaby, R.E.M. et al. (2008) Phytoplankton calcification in a high-CO2 world. Science 320: 336–340.PubMedCrossRefGoogle Scholar
  29. Israel, A. and Hophy, M. (2002) Growth, photosynthetic properties and Rubisco activies and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Glob. Change Biol. 8: 831–840.CrossRefGoogle Scholar
  30. Israel, A., Katz, S., Dubinsky, Z., Merrill, J.E. and Friedlander, M. (1999) Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhorophyta). J. Appl. Phycol. 11: 447–453.CrossRefGoogle Scholar
  31. Johnston, A.M. and Raven, J.A. (1990) Effects of culture in high CO2 on the photosynthetic physiology of Fucus serratus. Br. Phycol. J. 25: 75–82.CrossRefGoogle Scholar
  32. Johnston, A.M., Maberly, S.C. and Raven, J.A. (1992) The acquisition of inorganic carbon for four red macroalgae. Oecologia 92: 317–326.CrossRefGoogle Scholar
  33. Kübler, J.E., Johnston, A.M. and Raven, J.A. (1999) The effects reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ. 22: 1303–1310.CrossRefGoogle Scholar
  34. Langdon, C., Takahashi, T., Sweeney, C. et al. (2000) Effect of carbonate saturation state on the calcification rate of an experimental coral reef. Glob. Biogeochem. Cycles. 14: 639–654.CrossRefGoogle Scholar
  35. Larsson, C. and Axelsson, L. (1999) Bicarbonate uptake and utilization in marine macroalgae. Eur. J. Phycol. 34: 79–86.CrossRefGoogle Scholar
  36. Maberly, S.C. (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol. 26: 439–449.CrossRefGoogle Scholar
  37. Maberly, S.C. and Madsen, T.V. (1990) Contribution of air and water to the carbon balance of Fucus spiralis. Mar. Ecol. Prog. Ser. 62: 175–183.CrossRefGoogle Scholar
  38. Mercado, J.M., Niell, F.X. and Figueroa, F.L. (1997) Regulation of the mechanism for HCO3 use by the inorganic carbon level in Porphyra leucosticta thus in Le Jolis (Rhotophyta). Planta 201: 319–325.PubMedCrossRefGoogle Scholar
  39. Mercado, J.M., Gordillo, F.J.L., Figueroa, F.L. and Niell, F.X. (1998) External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. J. Exp. Mar. Biol. Ecol. 221: 209–220.CrossRefGoogle Scholar
  40. Mercado, J.M., Javier, F., Gordillo, L., Niell, F.X. and Figueroa, F.L. (1999) Effects of different leverls of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J. Appl. Phycol. 11: 455–461.CrossRefGoogle Scholar
  41. Orr, J.C., Fabry, V.J., Aumont, O. et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.PubMedCrossRefGoogle Scholar
  42. Pearson, P.N. and Palmer, M.R. (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406: 695–699.PubMedCrossRefGoogle Scholar
  43. Raven, J.A. (1991) Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature. Plant Cell Environ. 14: 779–794.CrossRefGoogle Scholar
  44. Raven, J.A. (1997) Inorganic carbon acquisition by marine autotrophs. Adv. Bot. Res. 27: 85–209.CrossRefGoogle Scholar
  45. Raven J.A. (1999) Photosynthesis in the intertidal zone: algae get an airing. J. Phycol. 35: 1102–1105.Google Scholar
  46. Reiskind, J.B., Beer, S. and Bowes, G. (1989) Photosynthesis, photorespiration and ecophysiological interactions in marine macroalgae. Aquat. Bot. 34: 131–152.CrossRefGoogle Scholar
  47. Riebesell, U.L.F., Zondervan, I., Rost, B., Tortell P.D., Zeebe R.E. and Morel F.M.M. (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407: 3633–3667.Google Scholar
  48. Riebesell, U., Schulz, K.G., Bellerby, R.G.J., Botros, M., Fritsche, P., MeyerhÃfer, M., Neill C., Nondal, G., Oschlies, A., Wohlers, J. and ZÃllner, E. (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450: 545–548.PubMedCrossRefGoogle Scholar
  49. Sabine, L.C., Feely, R.A., Gruber, N. et al. (2004) The oceanic sink for anthropogenic CO2. Nature 305: 367–371.Google Scholar
  50. Smith, A.D. and Roth, A.A. (1979) Effect of carbon dioxide concentration on calculation in the red coralline alga Bossiella orbigniana. Mar Biol. 52: 217–225.CrossRefGoogle Scholar
  51. Snoeijs, P., Klenell, M., Choo, K.S., Comhaire, I. Ray, S. and Pedersen, M. (2002) Strategies for carbon acquisition in the red marine macroalgae Coccotylus truncatus from the Baltic Sea. Mar. Biol. 140: 435–444.CrossRefGoogle Scholar
  52. Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry, 3rd edn. Wiley, New York.Google Scholar
  53. Takahashi, T., Feely, R.A., Weiss, R.F., Wanninkhof, R.H., Chipman, D.W., Sutherland, S.C. and Timothy, T.T. (1997) Global air-sea flux of CO2 difference. PNAS 94: 8292–8299.PubMedCrossRefGoogle Scholar
  54. Zou, D.H. (2005) Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250: 726–735.CrossRefGoogle Scholar
  55. Zou, D.H. and Gao, K.S. (2002) Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. Eur. J. Phycol. 37: 587–592.CrossRefGoogle Scholar
  56. Zou, D.H. and Gao, K.S. (2004a) Comparative mechanisms of photosynthetic carbon acquisition in Hizikia fusiforme under submersed and emersed conditions. Acta Bot. Sinica 46: 1178–1185.Google Scholar
  57. Zou, D.H. and Gao, K.S. (2004b) Exogenous carbon acquisition of photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta) under emersed state. Prog. Nat. Sci. 14(2): 34–40.CrossRefGoogle Scholar
  58. Zou, D.H. and Gao, K.S. (2005) Ecophysiological characteristics of four intertidal marine macroalgae during emersion along Shantou Coast of China, with a special reference to the relationship of photosynthesis and CO2. Acta Oceanol. Sinica. 24(3): 105–113.Google Scholar
  59. Zou, D.H., Gao, K.S. and Ruan, Z.X. (2001) Effects of elevated CO2 concentration on photosynthesis and nutrients uptake of Ulva lactuca. J. Ocean Univ. Qingdao 31: 877–882 (in Chinese with English abstract).Google Scholar
  60. Zou, D.H., Gao, K.S. and Xia, J.R. (2003) Photosynthetic utilization of inorganic carbon in the economic brown alga, Hizikia fusiforme (Sargassaceae) from the South China Sea. J. Phycol. 36: 1095–1100.CrossRefGoogle Scholar
  61. Zou, D.H., Xia, J.R. and Yang, Y.F. (2004) Photosynthetic use of exogenous inorganic carbon in the agarphyte Gracilaria lemaneiformis (Rhodophyta). Aquaculture 237: 421–431.CrossRefGoogle Scholar
  62. Zou, D.H., Gao, K.S. and Run, Z.X. (2007) Daily timing of emersion and elevated atmospheric CO2 concentration affect photosynthetic performance of the intertidal macroalga Ulva lactuca (Chorophyta) in sunlight. Bot. Mar. 50: 275–279.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.College of Environmental Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenChina

Personalised recommendations