Ultraviolet Radiation Effects on Macroalgae from Patagonia, Argentina

  • E. Walter Helbling
  • Virginia E. Villafañe
  • Donat-P. Häder
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 15)


Aquatic ecosystems account for almost half of the primary production on our planet, matching the combined productivity of all terrestrial ecosystems (Siegenthaler and Sarmiento, 1993). Though most of the aquatic productivity is due to phytoplankton, macroalgae contribute to a significant share, especially in coastal areas. In their natural environment, macroalgae are generally exposed to excessive solar PAR (photosynthetic active radiation, 400–700 nm) as well as to ultraviolet radiation (UV-B, 280–315 nm, and UV-A, 315–400 nm), especially in the upper eulittoral and the supralittoral (Hanelt, 1998). The coincidence of low tides and high solar angles results in the highest radiation stress, generally reflected as photoinhibition, i.e., the reduction in photosynthetic rates. Photoinhibition (Dring et al., 1996; Franklin and Forster, 1997; Häder et al., 2001b), is determined not only in macroalgae from the tropics and temperate zones but also in Arctic and Antarctic environments (Hanelt et al., 1997; Hanelt, 1998). Most of the observed photoinhibition is due to PAR, as this waveband has a high proportion of solar radiation energy reaching the Earth’s surface. However, in the top meters of the water column, a significant percentage of photoinhibition is caused by UV-B, and to a lesser extent by UV-A (Dring et al., 1996; Häder, 1997).


Solar Radiation Photosynthetic Active Radiation Polar Vortex Rock Pool Total Column Ozone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Agencia Nacional de Promoción Científica y Tecnológica – ANPCyT (Project PICT N° 2005-32034 to VEV), Proalar (Project N° 2000-104 to EWH), the United Nations Global Environmental Fund (PNUD Project N° B-C-39 to EWH), Fundación Antorchas (Project A-13955/3 to EWH), the Deutsche Akademische Austauschdienst (Project Proalar N° T332 408 138 415-RA to D.-P.H), and Fundación Playa Unión. This is contribution N° 114 of Estación de Fotobiología Playa Unión.


  1. Atkinson, R.J., Matthews, W.A., Newman, P.A. and Plumb, R.A. (1989) Evidence of the mid-latitude impact of Antarctic ozone depletion. Nature 340: 290–294.CrossRefGoogle Scholar
  2. Blumthaler, M. and Webb, A.R. (2003) UVR climatology, In: E.W. Helbling and H.E. Zagarese (eds.) UV Effects in Aquatic Organisms and Ecosystems. The Royal Society of Chemistry, Cambridge, pp. 21–58.CrossRefGoogle Scholar
  3. Boraso de Zaixso, A. (1995) Algas bentónicas de Puerto Deseado (Santa Cruz), Composición de la flora luego de la erupción del volcán Hudson. Nat Patagon Cienc Biol. 3: 129–152.Google Scholar
  4. Boraso de Zaixso, A., Cianca, M. and Cerezo, A.S. (1998) The seaweed resources of Argentina, In: A.T. Critchley and M. Ohno (eds.) Seaweed Resources of the World. Japan International Cooperation Agency, Tokyo, pp. 372–384.Google Scholar
  5. Boraso, A. and Zaixso, J.M. (2008) Algas marinas bentónicas, In: D. Boltovskoy (ed.) Atlas de sensibilidad ambiental de la costa y el Mar Argentino. Secretaría de Ambiente y Desarrollo Sustentable, República Argentina.Google Scholar
  6. Casas, G.N. and Piriz, M.L. (1996) Surveys of Undaria pinnatifida (Laminariales, Phaeophyta) in Golfo Nuevo, Argentina. Hydrobiologia 326/327: 213–215.CrossRefGoogle Scholar
  7. Casas, G.N., Piriz, M.L. and Parodi, E.R. (2008) Population features of the invasive kelp Undaria pinnatifida (Phaeophyceae: Laminariales) in Nuevo Gulf (Patagonia, Argentina). J. Mar. Biol. Assoc. UK 88: 21–28.CrossRefGoogle Scholar
  8. Díaz, S.B., Frederick, J.E., Lucas, T., Booth, C.R. and Smolskaia, I. (1996) Solar ultraviolet irradiance at Tierra del Fuego: comparison of measurements and calculations over full annual cycle. Geophys. Res. Lett. 23: 355–358.CrossRefGoogle Scholar
  9. Dring, M.J., Wagner, A., Boeskov, J. and Lüning, K. (1996) Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: influence of collection depth and season, and length of irradiation. Eur. J. Phycol. 31: 293–302.CrossRefGoogle Scholar
  10. Franklin, L.A. and Forster, R.M. (1997) The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur. J. Phycol. 32: 207–232.Google Scholar
  11. Frederick, J.E., Soulen, P.F., Diaz, S.B., Smolskaia, I., Booth, C.R., Lucas, T. and Neuschuler, D. (1993) Solar ultraviolet irradiance observed from Southern Argentina: September 1990 to March 1991. J. Geophys. Res. 98: 8891–8897.CrossRefGoogle Scholar
  12. Häder, D.P. (1997) Penetration and effects of solar UV-B on phytoplankton and macroalgae. Plant Ecol. 128: 4–13.CrossRefGoogle Scholar
  13. Häder, D.P., Lebert, M. and Helbling, E.W. (2000) Photosynthetic performance of the chlorophyte Ulva rigida measured in Patagonia on site. Recent Res. Dev. Photochem. Photobiol. 4: 259–269.Google Scholar
  14. Häder, D.P., Lebert, M. and Helbling, E.W. (2001a) Effects of solar radiation on the Patagonian macroalgae Enteromorpha linza (L.) J. Agardh – Chlorophyceae. J. Photochem. Photobiol. B Biol. 62: 43–54.CrossRefGoogle Scholar
  15. Häder, D.P., Lebert, M. and Helbling, E.W. (2001b) Photosynthetic performance of marine macroalgae measured in Patagonia on site. Trends Photochem. Photobiol. 8: 145–152.Google Scholar
  16. Häder, D.P., Lebert, M., Sinha, R.P., Barbieri, E.S. and Helbling, E.W. (2002) Role of protective and repair mechanisms in the inhibition of photosynthesis in marine macroalgae. Photochem. Photobiol. Sci. 1: 809–814.PubMedCrossRefGoogle Scholar
  17. Häder, D.P., Lebert, M. and Helbling, E.W. (2003) Effects of solar radiation on the Patagonian Rhodophyte Corallina officinalis (L.). Photosynth. Res. 78: 119–132.PubMedCrossRefGoogle Scholar
  18. Häder, D.P., Lebert, M. and Helbling, E.W. (2004) Variable fluorescence parameters in the filamentous Patagonian Rhodophytes, Callithamnium gaudichaudii and Ceramium sp. under solar radiation. J. Photochem. Photobiol. B Biol. 73: 87–99.CrossRefGoogle Scholar
  19. Häder, D.P., Kumar, H.D., Smith, R.C. and Worrest, R.C. (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 6: 267–285.PubMedCrossRefGoogle Scholar
  20. Hanelt, D. (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar. Biol. 131: 361–369.CrossRefGoogle Scholar
  21. Hanelt, D., Melchersmann, B., Wiencke, C. and Nultsch, W. (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar. Ecol. Prog. Ser. 149: 255–266.CrossRefGoogle Scholar
  22. Hargreaves, B.R. (2003) Water column optics and penetration of UVR, In: E.W. Helbling and H.E. Zagarese (eds.) UV Effects in Aquatic Organisms and Ecosystems. The Royal Society of Chemistry, Cambridge, pp. 59–105.CrossRefGoogle Scholar
  23. Helbling, E.W., Menchi, C.F. and Villafañe, V.E. (2002) Bioaccumulation and role of UV-absorbing compounds in two marine crustacean species from Patagonia, Argentina. Photochem. Photobiol. Sci. 1: 820–825.PubMedCrossRefGoogle Scholar
  24. Helbling, E.W., Barbieri, E.S., Sinha, R.P., Villafañe, V.E. and Häder, D.P. (2004) Dynamics of potentially protective compounds in Rhodophyta species from Patagonia (Argentina) exposed to solar radiation. J. Photochem. Photobiol. B: Biol. 75: 63–71.CrossRefGoogle Scholar
  25. Helbling, E.W., Barbieri, E.S., Marcoval, M.A., Gonçalves, R.J. and Villafañe, V.E. (2005) Impact of solar ultraviolet radiation on marine phytoplankton of Patagonia, Argentina. Photochem. Photobiol. 81: 807–818.PubMedCrossRefGoogle Scholar
  26. Holm-Hansen, O., Lubin, D. and Helbling, E.W. (1993) Ultraviolet radiation and its effects on organisms in aquatic environments, In: A.R. Young, L.O. Björn, J. Moan and W. Nultsch (eds.) Environmental UV Photobiology. Plenum, New York, pp. 379–425.Google Scholar
  27. Kirchhoff, V.W.J.H., Schuch, N.J., Pinheiro, D.K. and Harris, J.M. (1996) Evidence for an ozone hole perturbation at 30° south. Atmos. Environ. 30: 1481–1488.CrossRefGoogle Scholar
  28. Korbee Peinado, N., Abdala Díaz, R.T., Figueroa, F.L. and Helbling, E.W. (2004) Ammonium and UV radiation stimulate the accumulation of mycosporine like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina. J. Phycol. 40: 248–259.CrossRefGoogle Scholar
  29. Korbee Peinado, N., Figueroa, F.L. and Aguilera, J. (2006) Acumulación de aminoácidos tipo micosporina (MAAs): biosíntesis, fotocontrol y funciones ecofisiológicas. Rev. Chil. Hist. Nat. 79: 119–132.Google Scholar
  30. Madronich, S. (1993) The atmosphere and UV-B radiation at ground level, In: A.R. Young, L.O. Björn, J. Moan and W. Nultsch (eds.) Environmental UV Photobiology. Plenum Press, New York, pp. 1–39.Google Scholar
  31. Martin, J.P. and Cuevas, J.M. (2006) First record of Undaria pinnatifida (Laminariales, Phaeophyta) in Southern Patagonia, Argentina. Biol. Inv. 8: 1399–1402.CrossRefGoogle Scholar
  32. Menchi, C.F. (2001) Bioacumulación de compuestos potencialmente protectores de la radiación ultravioleta (RUV) en crustáceos herbívoros del mesolitoral, Puerto Madryn, Chubut, Argentina.Google Scholar
  33. Molina, M.J. and Molina, L.T. (1992) Stratospheric ozone, In: D.A. Dunnette and R.J. O’Brien (eds.) The science of global change: The impact of human activities on the environment. American Chemistry Society, Washington DC, pp. 24 –35.CrossRefGoogle Scholar
  34. Niyogi, K.K., Grossman, A.R. and Björkman, O. (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell. 10: 1121–1134.PubMedGoogle Scholar
  35. Orce, V.L. and Helbling, E.W. (1997) Latitudinal UVR-PAR measurements in Argentina: extent of the “ozone hole”. Global Planet. Change 15: 113–121.CrossRefGoogle Scholar
  36. Piriz, M.L., Eyras, M.C. and Rostagno, C.M. (2003) Changes in biomass and botanical composition of beach-cast seaweeds in a disturbed coastal area from Argentine Patagonia. J. Appl. Phycol. 15: 67–74.CrossRefGoogle Scholar
  37. Richter, P., Gonçalves, R.J., Marcoval, M.A., Helbling, E.W. and Häder, D.P. (2006) Diurnal changes in the composition of Mycosporine-like Amino Acids (MAA) in Corallina officinalis. Trends Photochem. Photobiol. 11: 33–44.Google Scholar
  38. Siegenthaler, U. and Sarmiento, J.L. (1993) Atmospheric carbon dioxide and the ocean. Nature 365: 119–125.CrossRefGoogle Scholar
  39. Villafañe, V.E., Barbieri, E.S. and Helbling, E.W. (2004) Annual patterns of ultraviolet radiation effects on temperate marine phytoplankton off Patagonia, Argentina. J. Plankton Res. 26: 167–174.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • E. Walter Helbling
    • 1
    • 2
  • Virginia E. Villafañe
    • 1
    • 2
  • Donat-P. Häder
    • 3
  1. 1.Estación de Fotobiología Playa UniónRawsonArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasCONICETArgentina
  3. 3.Department of BiologyFriedrich-Alexander Universität Erlangen/NürnbergErlangenGermany

Personalised recommendations