The Role of Oxytocin in Neuropsychiatric Disorders: Concepts and Mechanisms

  • Raz LevinEmail author
  • Shany Edelman
  • Idan Shalev
  • Richard P. Ebstein
  • Uriel Heresco-Levy


The role of oxytocin in the pathophysiology and treatment of major neuropsychiatric disorders has recently received increased attention. Although oxytocin has an established role as a circulating hormone involved in parturition and lactation, it also acts as a neurotransmitter and neuromodulator. Oxytocin receptors are found in several brain areas such as amygdala, nucleus accumbens and hippocampus, which have been heavily implicated in the pathophysiology of schizophrenia, depression and anxiety disorders. Converging lines of evidences suggest that oxytocin is a key mediator of complex emotional and social behaviors, including attachment, social recognition, and aggression. Moreover, oxytocin alleviates anxiety and impacts on fear conditioning and extinction and on social reward systems. Furthermore, recent data suggest that oxytocin has neuroprotective effects by increasing the resistance of fetal neurons to insults during delivery. Due to its influence upon a wide range of behaviors and its antistress neuroprotective properties the role of oxytocin-related dysfunctions and therapeutics are presently assessed in major neuropsychiatric disorders. In this chapter we will review and summarize some of the mechanisms and concepts relevant to the role of oxytocin in the pathophysiology and therapeutics of neuropsychiatric disorders.


Oxytocin Neuropsychiatric disorders Neuroprotection Social ability 



adrenocorticotrophic hormone


∝-amino-3-hydroxy-5-methylisoxazole propionic acid


autism spectrum disorders


corticotrophin-releasing hormone


γ-aminobutyric acid


G protein-coupled receptor




kainic acid


metabotropic glutamatergic receptors








prepulse inhibition


posttraumatic stress disorder


social anxiety disorder


  1. 1.
    Murphy D, Si-Hoe SL, Brenner S, Venkatesh B. Something fishy in the rat brain: molecular genetics of the hypothalamo-neurohypophysial system. Bioassays 1998; 20:741–749CrossRefGoogle Scholar
  2. 2.
    Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev 2001; 81(2):629–683PubMedGoogle Scholar
  3. 3.
    Gould BR, Zingg HH. Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-LacZ reporter mouse. Neuroscience 2003; 122(1):155–167PubMedCrossRefGoogle Scholar
  4. 4.
    Kirsch P, Esslinger C, Chen Q, et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 2005; 25(49):11489–11493PubMedCrossRefGoogle Scholar
  5. 5.
    Goodson JL. Nonapeptides and the evolutionary patterning of sociality. Prog Brain Res 2008; 170:3–15PubMedCrossRefGoogle Scholar
  6. 6.
    Hara Y, Battey J, Gainer H. Structure of mouse vasopressin and oxytocin genes. Brain Res 1990; 8(4):319–324CrossRefGoogle Scholar
  7. 7.
    Sausville E, Carney D, Battey J. The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem 1985; 260(18):10236–10241PubMedGoogle Scholar
  8. 8.
    Rao VV, Loffler C, Battey J, Hansmann I. The human gene for oxytocin-neurophysin I (OXT) is physically mapped to chromosome 20p13 by in situ hybridization. Cytogenetics Cell Genetics 1992; 61(4):271–273CrossRefGoogle Scholar
  9. 9.
    Inoue T, Kimura T, Azuma C, et al. Structural organization of the human oxytocin receptor gene. J Biol Chem 1994 23; 269(51):32451–32456PubMedGoogle Scholar
  10. 10.
    Michelini S, Urbanek M, Dean M, Goldman D. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3. Am J Med Genetics 1995; 60(3):183–187CrossRefGoogle Scholar
  11. 11.
    Simmons CF, Jr., Clancy TE, Quan R, Knoll JH. The oxytocin receptor gene (OXTR) localizes to human chromosome 3p25 by fluorescence in situ hybridization and PCR analysis of somatic cell hybrids. Genomics 1995; 26(3):623–625PubMedCrossRefGoogle Scholar
  12. 12.
    Skuse DH, Gallagher L. Dopaminergic-neuropeptide interactions in the social brain. Trends Cognitive Sci 2009; 13(1):27–35CrossRefGoogle Scholar
  13. 13.
    Meaney MJ, Szyf M. Maternal care as a model for experience-dependent chromatin plasticity? Trends Neurosci 2005; 28(9):456–463PubMedCrossRefGoogle Scholar
  14. 14.
    Fanelli F, Barbier P, Zanchetta D, de Benedetti PG, Chini B et al. Activation mechanism of human oxytocin receptor: a combined study of experimental and computer-simulated mutagenesis. Mol Pharmacol 1999; 56(1):214–225PubMedGoogle Scholar
  15. 15.
    Kimura T, Tanizawa O, Mori K, Brownstein MJ, Okayama H et al. Structure and expression of a human oxytocin receptor. Nature 1992; 356(6369):526–529PubMedCrossRefGoogle Scholar
  16. 16.
    Young WS 3rd, Gainer H. Transgenesis and the study of expression, cellular targeting and function of oxytocin, vasopressin and their receptors. Neuroendocrinology 2003; 78(4):185–203PubMedCrossRefGoogle Scholar
  17. 17.
    Young WS 3rd, Gainer H. Vasopressin/oxytocin and receptors.Vasopressin/oxytocin and receptors.Vasopressin/oxytocin and receptors. In: Squire L (ed) Encyclopedia of Neuroscience. Academic Press, Oxford, 2009; pp. 51–59CrossRefGoogle Scholar
  18. 18.
    Lee HJ, Macbeth AH, Pagani JH, Young WS 3rd. Oxytocin: the great facilitator of life. Prog Neurobiol 2009; 88(2):127–151PubMedGoogle Scholar
  19. 19.
    Insel TR, Gelhard R, Shapiro LE. The comparative distribution of forebrain receptors for neurohypophyseal peptides in monogamous and polygamous mice. Neuroscience 1991; 43(2–3):623–630PubMedCrossRefGoogle Scholar
  20. 20.
    Veinante P, Freund-Mercier MJ. Distribution of oxytocin- and vasopressin-binding sites in the rat extended amygdala: a histoautoradiographic study. J Comparative Neurol 1997; 383(3):305–325CrossRefGoogle Scholar
  21. 21.
    Loup F, Tribollet E, Dubois-Dauphin M, Dreifuss JJ. Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res 1991; 555(2):220–232CrossRefGoogle Scholar
  22. 22.
    Loup F, Tribollet E, Dubois-Dauphin M, Pizzolato G, Dreifuss JJ et al.. Localization of oxytocin binding sites in the human brainstem and upper spinal cord: an autoradiographic study. Brain Res 1989; 500(1–2):223–230PubMedCrossRefGoogle Scholar
  23. 23.
    Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1988; (3):179–186Google Scholar
  24. 24.
    Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Ann Rev Pharmacol Toxicol 2001; 41:237–260CrossRefGoogle Scholar
  25. 25.
    Javitt DC, Zukin SR. The role of excitatory amino acids in neuropsychiatric illness. J Neuropsychiatry Clin Neurosci 1990; 2(1):44–52PubMedGoogle Scholar
  26. 26.
    Ulas J, Cotman CW. Excitatory amino acid receptors in schizophrenia. Schizophr Bull 1993; 19(1):105–117PubMedCrossRefGoogle Scholar
  27. 27.
    Heresco-Levy U. Amino acids neurotransmitter systems in schizophrenia and other psychotic disorders. In: D’haenen H, den Boer J, Westenberg M, Wilner P (eds) Textbook of Biological Psychiatry. John Wiley & Sons, London, 2003; pp. 587–600Google Scholar
  28. 28.
    Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148(10):1301–1308PubMedGoogle Scholar
  29. 29.
    Davies BM, Beech HR. The effect of 1-arylcylohexylamine (sernyl) on twelve normal volunteers. J Mental Sci 1960; 106:912–924Google Scholar
  30. 30.
    Brann DW, Mahesh VB. Excitatory amino acids: evidence for a role in the control of reproduction and anterior pituitary hormone secretion. Endocrine Rev 1997; 18(5):678–700CrossRefGoogle Scholar
  31. 31.
    Goldsmith PC, Thind KK, Perera AD, Plant TM. Glutamate-immunoreactive neurons and their gonadotropin-releasing hormone-neuronal interactions in the monkey hypothalamus. Endocrinology 1994; 134(2):858–868PubMedCrossRefGoogle Scholar
  32. 32.
    van den Pol AN, Wuarin JP, Dudek FE. Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science 1990; 250(4985):1276–1278PubMedCrossRefGoogle Scholar
  33. 33.
    Thind KK, Goldsmith PC. Glutamate and GABAergic neurointeractions in the monkey hypothalamus: a quantitative immunomorphological study. Neuroendocrinology 1995; 61(5):471–485PubMedCrossRefGoogle Scholar
  34. 34.
    Meeker RB, Swanson DJ, Greenwood RS, Hayward JN. Quantitative mapping of glutamate presynaptic terminals in the supraoptic nucleus and surrounding hypothalamus. Brain Res 1993; 600(1):112–122PubMedCrossRefGoogle Scholar
  35. 35.
    van den Pol AN. Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons. J Neurosci 1991; 11(7):2087–2101PubMedGoogle Scholar
  36. 36.
    Meeker RB, Swanson DJ, Greenwood RS, Hayward JN. Ultrastructural distribution of glutamate immunoreactivity within neurosecretory endings and pituicytes of the rat neurohypophysis. Brain Res 1991; 564(2):181–193PubMedCrossRefGoogle Scholar
  37. 37.
    Durand D, Pampillo M, Caruso C, Lasaga M. Role of metabotropic glutamate receptors in the control of neuroendocrine function. Neuropharmacology 2008; 55(4):577–583PubMedCrossRefGoogle Scholar
  38. 38.
    Silverman AJ, Zimmerman EA. Magnocellular neurosecretory system. Ann Rev Neurosci 1983; 6:357–380PubMedCrossRefGoogle Scholar
  39. 39.
    Pampillo M, del Carmen Diaz M, Duvilanski BH, Rettori V, Seilicovich A, Lasaga M. Differential effects of glutamate agonists and D-aspartate on oxytocin release from hypothalamus and posterior pituitary of male rats. Endocrine 2001; 15(3):309–315PubMedCrossRefGoogle Scholar
  40. 40.
    Morsette DJ, Sidorowicz H, Sladek CD. Role of non-NMDA receptors in vasopressin and oxytocin release from rat hypothalamo-neurohypophysial explants. Am J Physiol 2001; 280(2):R313–R322Google Scholar
  41. 41.
    Sams-Dodd F. Effect of novel antipsychotic drugs on phencyclidine-induced stereotyped behaviour and social isolation in the rat social interaction test. Behav Pharmacol 1997; 8(2–3):196–215PubMedGoogle Scholar
  42. 42.
    Qiao H, Noda Y, Kamei H, et al. Clozapine, but not haloperidol, reverses social behavior deficit in mice during withdrawal from chronic phencyclidine treatment. Neuroreport 2001; 12(1):11–15PubMedCrossRefGoogle Scholar
  43. 43.
    Caldwell HK, Stephens SL, Young WS 3rd. Oxytocin as a natural antipsychotic: a study using oxytocin knockout mice. Mol Psychiatry 2009; 14(2):190–196PubMedCrossRefGoogle Scholar
  44. 44.
    Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI. Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology 2005; 30(10):1883–1894PubMedCrossRefGoogle Scholar
  45. 45.
    O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 2004; 304(5669):452–454PubMedCrossRefGoogle Scholar
  46. 46.
    Baumgartner T, Heinrichs M, Vonlanthen A, Fischbacher U, Fehr E. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron 2008; 58(4):639–650PubMedCrossRefGoogle Scholar
  47. 47.
    Sesack SR, Carr DB. Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav 2002; 77(4–5):513–517PubMedCrossRefGoogle Scholar
  48. 48.
    Silk JB, Alberts SC, Altmann J. Social bonds of female baboons enhance infant survival. Science 2003; 302(5648):1231–1234PubMedCrossRefGoogle Scholar
  49. 49.
    Adolphs R. Cognitive neuroscience of human social behaviour. Nature Rev 2003; 4(3):165–178Google Scholar
  50. 50.
    Volpe JJ. Neurology of the newborn. Saunders, Philadelphia; 2000Google Scholar
  51. 51.
    Brown CH, Grattan DR. Does maternal oxytocin protect the fetal brain? Trends Endocrinol Metabolism 2007; 18(6):225–226CrossRefGoogle Scholar
  52. 52.
    Tyzio R, Cossart R, Khalilov I, et al. Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 2006; 314(5806):1788–1792PubMedCrossRefGoogle Scholar
  53. 53.
    Rivera C, Voipio J, Payne JA, et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 1999; 397(6716):251–255PubMedCrossRefGoogle Scholar
  54. 54.
    Carbillon L. Comment on “Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery”. Science 2007; 317(5835):197; author reply 197Google Scholar
  55. 55.
    Champagne FA. Epigenetic mechanisms and the transgenerational effects of maternal care. Frontiers Neuroendocrinol 2008; 29(3):386–397CrossRefGoogle Scholar
  56. 56.
    Leng G, Meddle SL, Douglas AJ. Oxytocin and the maternal brain. Curr Opin Pharmacol 2008; 8(6):731–734PubMedCrossRefGoogle Scholar
  57. 57.
    Levine A, Zagoory-Sharon O, Feldman R, Weller A. Oxytocin during pregnancy and early postpartum: individual patterns and maternal-fetal attachment. Peptides 2007; 28(6):1162–1169PubMedCrossRefGoogle Scholar
  58. 58.
    Champagne F, Meaney MJ. Like mother, like daughter: evidence for non-genomic transmission of parental behavior and stress responsivity. Prog Brain Res 2001; 133:287–302PubMedCrossRefGoogle Scholar
  59. 59.
    Kendrick KM. Oxytocin, motherhood and bonding. Exp Physiol 2000; 85:111S–124SPubMedCrossRefGoogle Scholar
  60. 60.
    Singh PJ, Hofer MA. Oxytocin reinstates maternal olfactory cues for nipple orientation and attachment in rat pups. Physiol Behav 1978; 20(4):385–389PubMedCrossRefGoogle Scholar
  61. 61.
    Nelson E, Panksepp J. Oxytocin mediates acquisition of maternally associated odor preferences in preweanling rat pups. Behav Neurosci 1996; 110(3):583–592PubMedCrossRefGoogle Scholar
  62. 62.
    Henry JP, Wang S. Effects of early stress on adult affiliative behavior. Psychoneuroendocrinology 1998; 23(8):863–875PubMedCrossRefGoogle Scholar
  63. 63.
    Bosch OJ, Sartori SB, Singewald N, Neumann ID. Extracellular amino acid levels in the paraventricular nucleus and the central amygdala in high- and low-anxiety dams rats during maternal aggression: regulation by oxytocin. Stress 2007; 10(3):261–270PubMedCrossRefGoogle Scholar
  64. 64.
    Slattery DA, Neumann ID. No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. J Physiol 2008; 586(2):377–385PubMedCrossRefGoogle Scholar
  65. 65.
    Richard P, Moos F, Freund-Mercier MJ. Central effects of oxytocin. Physiol Rev 1991; 71(2):331–370PubMedGoogle Scholar
  66. 66.
    Amico JA, Johnston JM, Vagnucci AH. Suckling-induced attenuation of plasma cortisol concentrations in postpartum lactating women. Endocrine Res 1994; 20(1):79–87CrossRefGoogle Scholar
  67. 67.
    Chiodera P, Salvarani C, Bacchi-Modena A, et al. Relationship between plasma profiles of oxytocin and adrenocorticotropic hormone during suckling or breast stimulation in women. Hormone Res 1991; 35(3–4):119–123PubMedCrossRefGoogle Scholar
  68. 68.
    Heinrichs M, Neumann I, Ehlert U. Lactation and stress: protective effects of breast-feeding in humans. Stress 2002; 5(3):195–203PubMedCrossRefGoogle Scholar
  69. 69.
    Nissen E, Uvnas-Moberg K, Svensson K, Stock S, Widstrom AM, Winberg J. Different patterns of oxytocin, prolactin but not cortisol release during breastfeeding in women delivered by caesarean section or by the vaginal route. Early Human Develop 1996; 45(1–2):103–118CrossRefGoogle Scholar
  70. 70.
    Altemus M, Deuster PA, Galliven E, Carter CS, Gold PW. Suppression of hypothalmic-pituitary-adrenal axis responses to stress in lactating women. J Clin Endocrinol Metabolism 1995; 80(10):2954–2959CrossRefGoogle Scholar
  71. 71.
    Altemus M, Redwine LS, Leong YM, Frye CA, Porges SW, Carter CS. Responses to laboratory psychosocial stress in postpartum women. Psychosomatic Med 2001; 63(5):814–821Google Scholar
  72. 72.
    Heinrichs M, Meinlschmidt G, Neumann I, et al. Effects of suckling on hypothalamic-pituitary-adrenal axis responses to psychosocial stress in postpartum lactating women. J Clin Eendocrinol Metabolism 2001; 86(10):4798–4804CrossRefGoogle Scholar
  73. 73.
    Heinrichs M, Meinlschmidt G, Wippich W, Ehlert U, Hellhammer DH. Selective amnesic effects of oxytocin on human memory. Physiol Behav 2004; 83(1):31–38PubMedGoogle Scholar
  74. 74.
    Neumann ID, Kromer SA, Toschi N, Ebner K. Brain oxytocin inhibits the (re)activity of the hypothalamo-pituitary-adrenal axis in male rats: involvement of hypothalamic and limbic brain regions. Regulatory Peptides 2000; 96(1–2):31–38PubMedCrossRefGoogle Scholar
  75. 75.
    Neumann ID, Wigger A, Torner L, Holsboer F, Landgraf R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus. J Neuroendocrinol 2000; 12(3):235–243PubMedCrossRefGoogle Scholar
  76. 76.
    Light KC, Smith TE, Johns JM, Brownley KA, Hofheimer JA, Amico JA. Oxytocin responsivity in mothers of infants: a preliminary study of relationships with blood pressure during laboratory stress and normal ambulatory activity. Health Psychol 2000; 19(6):560–567PubMedCrossRefGoogle Scholar
  77. 77.
    Carter CS, Altemus M, Chrousos GP. Neuroendocrine and emotional changes in the post-partum period. Prog Brain Res 2001; 133:241–249PubMedCrossRefGoogle Scholar
  78. 78.
    Glynn LM, Schetter CD, Wadhwa PD, Sandman CA. Pregnancy affects appraisal of negative life events. J Psychosomatic Res 2004; 56(1):47–52CrossRefGoogle Scholar
  79. 79.
    Fries AB, Ziegler TE, Kurian JR, Jacoris S, Pollak SD. Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proc Natl Acad Sci USA 2005; 102(47):17237–17240CrossRefGoogle Scholar
  80. 80.
    Whitnall MH, Key S, Ben-Barak Y, Ozato K, Gainer H. Neurophysin in the hypothalamo-neurohypophysial system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons. J Neurosci 1985; 5(1):98–109PubMedGoogle Scholar
  81. 81.
    Insel TR, Winslow JT. Central administration of oxytocin modulates the infant rat’s response to social isolation. Eur J Pharmacol 1991; 203(1):149–152PubMedCrossRefGoogle Scholar
  82. 82.
    Tribollet E, Goumaz M, Raggenbass M, Dreifuss JJ. Appearance and transient expression of vasopressin and oxytocin receptors in the rat brain. J Receptor Res 1991; 11(1–4):333–346Google Scholar
  83. 83.
    Marazzity D., Bani A., Casamassima F., et al. Oxytocin: an old hormone for new avenues. Clin Neuropsychiatry 2006; 3(5):302–321Google Scholar
  84. 84.
    Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. Oxytocin increases trust in humans. Nature 2005; 435(7042):673–676PubMedCrossRefGoogle Scholar
  85. 85.
    Turner RA, Altemus M, Enos T, Cooper B, McGuinness T. Preliminary research on plasma oxytocin in normal cycling women: investigating emotion and interpersonal distress. Psychiatry 1999; 62(2):97–113PubMedGoogle Scholar
  86. 86.
    Holt-Lunstad J, Birmingham WA, Light KC. Influence of a “warm touch” support enhancement intervention among married couples on ambulatory blood pressure, oxytocin, alpha amylase, and cortisol. Psychosomatic Med 2008; 70(9):976–985CrossRefGoogle Scholar
  87. 87.
    Buchheim A, Heinrichs M, George C, et al. Oxytocin enhances the experience of attachment security. Psychoneuroendocrinology 2009 34(9): 1417–1422Google Scholar
  88. 88.
    Heinrichs M, von Dawans B, Domes G. Oxytocin, vasopressin, and human social behavior. Frontiers Neuroendocrinol 2009 30(4): 548–557Google Scholar
  89. 89.
    Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 2003; 54(12):1389–1398PubMedCrossRefGoogle Scholar
  90. 90.
    Ditzen B, Schaer M, Gabriel B, Bodenmann G, Ehlert U, Heinrichs M. Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol Psychiatry 2009; 65(9):728–731PubMedCrossRefGoogle Scholar
  91. 91.
    Insel TR, Shapiro LE. Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci USA 1992; 89(13):5981–5985PubMedCrossRefGoogle Scholar
  92. 92.
    Huber D, Veinante P, Stoop R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 2005; 308(5719):245–248PubMedCrossRefGoogle Scholar
  93. 93.
    Bartz JA, Hollander E. The neuroscience of affiliation: forging links between basic and clinical research on neuropeptides and social behavior. Hormones Behav 2006; 50(4):518–528CrossRefGoogle Scholar
  94. 94.
    Hammock EA, Young LJ. Oxytocin, vasopressin and pair bonding: implications for autism. Philosophical Trans Royal Soc London 2006; 361(1476):2187–2198CrossRefGoogle Scholar
  95. 95.
    Heinrichs M, Gaab J. Neuroendocrine mechanisms of stress and social interaction: implications for mental disorders. Curr Opin Psychiatry 2007; 20(2):158–162PubMedCrossRefGoogle Scholar
  96. 96.
    Petrovic P, Kalisch R, Singer T, Dolan RJ. Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J Neurosci 2008; 28(26):6607–6615PubMedCrossRefGoogle Scholar
  97. 97.
    Domes G, Heinrichs M, Glascher J, Buchel C, Braus DF, Herpertz SC. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 2007; 62(10):1187–1190PubMedCrossRefGoogle Scholar
  98. 98.
    Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC. Oxytocin improves “mind-reading” in humans. Biol Psychiatry 2007; 61(6):731–733PubMedCrossRefGoogle Scholar
  99. 99.
    Guastella AJ, Mitchell PB, Dadds MR. Oxytocin increases gaze to the eye region of human faces. Biol Psychiatry 2008; 63(1):3–5PubMedCrossRefGoogle Scholar
  100. 100.
    Guastella AJ, Carson DS, Dadds MR, Mitchell PB, Cox RE. Does oxytocin influence the early detection of angry and happy faces? Psychoneuroendocrinology 2009; 34(2):220–225PubMedCrossRefGoogle Scholar
  101. 101.
    Di Simplicio M, Massey-Chase R, Cowen PJ, Harmer CJ. Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. J Psychopharmacol 2009; 23(3):241–248PubMedCrossRefGoogle Scholar
  102. 102.
    Guastella AJ, Mitchell PB, Mathews F. Oxytocin enhances the encoding of positive social memories in humans. Biol Psychiatry 2008; 64(3):256–258PubMedCrossRefGoogle Scholar
  103. 103.
    Savaskan E, Ehrhardt R, Schulz A, Walter M, Schachinger H. Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology 2008; 33(3):368–374PubMedCrossRefGoogle Scholar
  104. 104.
    Rimmele U, Hediger K, Heinrichs M, Klaver P. Oxytocin makes a face in memory familiar. J Neurosci 2009; 29(1):38–42PubMedCrossRefGoogle Scholar
  105. 105.
    Bartz JA, Hollander E. Oxytocin and experimental therapeutics in autism spectrum disorders. Prog Brain Res 2008; 170:451–462PubMedCrossRefGoogle Scholar
  106. 106.
    Szatmari P, Tuff L, Finlayson MA, Bartolucci G. Asperger’s syndrome and autism: neurocognitive aspects. J Am Acad Child Adolescent Psychiatry 1990 Jan; 29(1):130–136CrossRefGoogle Scholar
  107. 107.
    Davies S, Bishop D, Manstead AS, Tantam D. Face perception in children with autism and Asperger’s syndrome. J Child Psychol Psychiatry Allied Disciplines 1994; 35(6):1033–1057CrossRefGoogle Scholar
  108. 108.
    Barton JJ. Disorders of face perception and recognition. Neurologic Clinics 2003; 21(2):521–548PubMedCrossRefGoogle Scholar
  109. 109.
    Hobson RP, Ouston J, Lee A. Emotion recognition in autism: coordinating faces and voices. Psychol Med 1988; 18(4):911–923PubMedCrossRefGoogle Scholar
  110. 110.
    Tantam D, Monaghan L, Nicholson H, Stirling J. Autistic children’s ability to interpret faces: a research note. J Child Psychol Psychiatry Allied Disciplines 1989; 30(4):623–630CrossRefGoogle Scholar
  111. 111.
    Ylisaukko-oja T, Alarcon M, Cantor RM, et al. Search for autism loci by combined analysis of Autism Genetic Resource Exchange and Finnish families. Annals Neurol 2006; 59(1):145–155CrossRefGoogle Scholar
  112. 112.
    Wu S, Jia M, Ruan Y, et al. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 2005; 58(1):74–77PubMedCrossRefGoogle Scholar
  113. 113.
    Jacob S, Brune CW, Carter CS, Leventhal BL, Lord C, Cook EH, Jr. Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci Lett 2007; 417(1):6–9PubMedCrossRefGoogle Scholar
  114. 114.
    Modahl C, Green L, Fein D, et al. Plasma oxytocin levels in autistic children. Biol Psychiatry 1998; 43(4):270–277PubMedCrossRefGoogle Scholar
  115. 115.
    Green L, Fein D, Modahl C, Feinstein C, Waterhouse L, Morris M. Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 2001; 50(8):609–613PubMedCrossRefGoogle Scholar
  116. 116.
    Jansen LM, Gispen-de Wied CC, Wiegant VM, Westenberg HG, Lahuis BE, van Engeland H. Autonomic and neuroendocrine responses to a psychosocial stressor in adults with autistic spectrum disorder. J Autism Develop Disorders 2006; 36(7):891–899CrossRefGoogle Scholar
  117. 117.
    Hollander E, Novotny S, Hanratty M, et al. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 2003; 28(1):193–198PubMedCrossRefGoogle Scholar
  118. 118.
    den Boer JA, Westenberg HG. Oxytocin in obsessive compulsive disorder. Peptides 1992; 13(6):1083–1085CrossRefGoogle Scholar
  119. 119.
    Epperson CN, McDougle CJ, Price LH. Intranasal oxytocin in obsessive-compulsive disorder. Biol Psychiatry 1996; 40(6):547–549PubMedCrossRefGoogle Scholar
  120. 120.
    Bartz JA, Hollander E. Oxytocin and experimental therapeutics in autism spectrum disorders (Progress in Brain Research, 170:451–462). In: Landgraf R, Neumann ID (eds) Advances in Vasopressin and Oxytocin—From Genes to Behaviour to Disease Elsevier, 2009; pp. 451–462Google Scholar
  121. 121.
    Anagnostou E, Soorya L, Bartz J, Halpern D, Fan J, Hollander E. Intravenous and intranasal oxytocin targets social cognition and repetitive behavior domains in autism: behavioral and functional imaging findings. International Meeting for Autism Research. Seattle, WA; 2007Google Scholar
  122. 122.
    Bartz JA, McInnes LA. CD38 regulates oxytocin secretion and complex social behavior. Bioessays 2007; 29(9):837–841PubMedCrossRefGoogle Scholar
  123. 123.
    Alonso J, Lepine JP. Overview of key data from the European Study of the Epidemiology of Mental Disorders (ESEMeD). J Clin Psychiatry 2007; 68(Suppl 2):3–9PubMedCrossRefGoogle Scholar
  124. 124.
    Kessler RC. The global burden of anxiety and mood disorders: putting the European Study of the Epidemiology of Mental Disorders (ESEMeD) findings into perspective. J Clin Psychiatry 2007; 68(Suppl 2):10–19PubMedGoogle Scholar
  125. 125.
    Scott KM, Bruffaerts R, Tsang A, et al. Depression-anxiety relationships with chronic physical conditions: results from the World Mental Health Surveys. J Affective Disorders 2007; 103(1–3):113–120CrossRefGoogle Scholar
  126. 126.
    Holsboer F. Corticotropin-releasing hormone modulators and depression. Curr Opin Investigating Drugs 2003; 4(1):46–50Google Scholar
  127. 127.
    De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Glucocorticoid feedback resistance. Trends Endocrinol Metabolism 1997; 8(1):26–33CrossRefGoogle Scholar
  128. 128.
    Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 2001; 49(12):1023–1039PubMedCrossRefGoogle Scholar
  129. 129.
    Pariante CM. Depression, stress and the adrenal axis. J Neuroendocrinol 2003; 15(8):811–812PubMedCrossRefGoogle Scholar
  130. 130.
    Scott LV, Dinan TG. Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: implications for the pathophysiology of depression. Life Sci 1998; 62(22):1985–1998PubMedCrossRefGoogle Scholar
  131. 131.
    Modell S, Yassouridis A, Huber J, Holsboer F. Corticosteroid receptor function is decreased in depressed patients. Neuroendocrinology 1997; 65(3):216–222PubMedCrossRefGoogle Scholar
  132. 132.
    Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000; 23(5):477–501PubMedCrossRefGoogle Scholar
  133. 133.
    Nemeroff CB. The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol Psychiatry 1996; 1(4):336–342PubMedGoogle Scholar
  134. 134.
    Pitman RK, Orr SP, Lasko NB. Effects of intranasal vasopressin and oxytocin on physiologic responding during personal combat imagery in Vietnam veterans with posttraumatic stress disorder. Psychiatry Res 1993; 48(2):107–117PubMedCrossRefGoogle Scholar
  135. 135.
    Meinlschmidt G, Heim C. Sensitivity to intranasal oxytocin in adult men with early parental separation. Biol Psychiatry 2007; 61(9):1109–1111PubMedCrossRefGoogle Scholar
  136. 136.
    Guastella AJ, Howard AL, Dadds MR, Mitchell P, Carson DS. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology 2009; 34(6):917–923PubMedCrossRefGoogle Scholar
  137. 137.
    McDougle CJ, Barr LC, Goodman WK, Price LH. Possible role of neuropeptides in obsessive compulsive disorder. Psychoneuroendocrinology 1999; 24(1):1–24PubMedCrossRefGoogle Scholar
  138. 138.
    Meisenberg G, Simmons WH. Centrally mediated effects of neurohypophyseal hormones. Neurosci Biobehav Rev 1983; 7(2):263–280PubMedCrossRefGoogle Scholar
  139. 139.
    Drago F, Pedersen CA, Caldwell JD, Prange AJ Jr. Oxytocin potently enhances novelty-induced grooming behavior in the rat. Brain Res 1986; 368(2):287–295PubMedCrossRefGoogle Scholar
  140. 140.
    Nelson E, Alberts JR. Oxytocin-induced paw sucking in infant rats. Annals NY Acad Sci 1997; 807:543–545CrossRefGoogle Scholar
  141. 141.
    Drago F, Pedersen CA, Caldwell JD, Prange AJ, Jr. Oxytocin potently enhances novelty-induced grooming behavior in the rat. Brain Res 1986; 368(2):287–295PubMedCrossRefGoogle Scholar
  142. 142.
    Van Wimersma Greidanus TB, Kroodsma JM, Pot ML, Stevens M, Maigret C. Neurohypophyseal hormones and excessive grooming behaviour. Eur J Pharmacol 1990; 187(1):1–8PubMedCrossRefGoogle Scholar
  143. 143.
    Panksepp J. Oxytocin effects on emotional processes: separation distress, social bonding, and relationships to psychiatric disorders. Annals NY Acad Sci 1992; 652:243–252CrossRefGoogle Scholar
  144. 144.
    Leckman JF, Grice DE, Barr LC, et al. Tic-related vs. non-tic-related obsessive compulsive disorder. Anxiety 1994; 1(5):208–215PubMedGoogle Scholar
  145. 145.
    Altemus M, Swedo SE, Leonard HL, et al. Changes in cerebrospinal fluid neurochemistry during treatment of obsessive-compulsive disorder with clomipramine. Archiv General Psychiatry 1994; 51(10):794–803CrossRefGoogle Scholar
  146. 146.
    Goodman WK, Price LH, Delgado PL, et al. Specificity of serotonin reuptake inhibitors in the treatment of obsessive-compulsive disorder. Comparison of fluvoxamine and desipramine. Archiv General Psychiatry 1990; 47(6):577–585CrossRefGoogle Scholar
  147. 147.
    Horner MD, Hamner MB. Neurocognitive functioning in posttraumatic stress disorder. Neuropsychol Rev 2002; 12(1):15–30PubMedCrossRefGoogle Scholar
  148. 148.
    Pitman RK. Post-traumatic stress disorder, hormones, and memory. Biol Psychiatry 1989; 26(3):221–223PubMedCrossRefGoogle Scholar
  149. 149.
    Pitman RK. Posttraumatic stress disorder, conditioning, and network theory. Psvchiatric Annals 1988; 18:182–189Google Scholar
  150. 150.
    Southwick SM, Krystal JH, Morgan CA, et al. Abnormal noradrenergic function in posttraumatic stress disorder. Archiv General Psychiatry 1993; 50(4):266–274CrossRefGoogle Scholar
  151. 151.
    De Wied D. Pituitary-adrenal system hormones and behavior. In: Selye H (ed) Selye’s Guide to Stress Research. Van Nostrand Reinhold Co, New York, 1980; pp. 252–279Google Scholar
  152. 152.
    van Wimersma Greidanus TB, Jolles J, De Wied D. Hypothalamic neuropeptides and memory. Acta Neurochirurgica 1985; 75(1–4):99–105PubMedCrossRefGoogle Scholar
  153. 153.
    McGaugh JL. Significance and remembrance: The role of neuromodulatory systems. Psychol Sci 1990; 1:15–25CrossRefGoogle Scholar
  154. 154.
    Bohus B, Kovacs GL, de Wied D. Oxytocin, vasopressin and memory: opposite effects on consolidation and retrieval processes. Brain Res 1978; 157(2):414–417PubMedCrossRefGoogle Scholar
  155. 155.
    van Wimersma Greidanus TB, Burbach JP, Veldhuis HD. Vasopressin and oxytocin. Their presence in the central nervous system and their functional significance in brain processes related to behaviour and memory. Acta endocrinologica 1986; 276:85–94Google Scholar
  156. 156.
    Solomon Z, Weisenberg M, Schwarzwald J, Mikulincer M. Posttraumatic stress disorder among frontline soldiers with combat stress reaction: the 1982 Israeli experience. Am J Psychiatry 1987; 144(4):448–454PubMedGoogle Scholar
  157. 157.
    Yehuda R. Psychoneuroendocrinology of post-traumatic stress disorder. Psychiatric Clin N Am 1998; 21(2):359–379CrossRefGoogle Scholar
  158. 158.
    Meewisse ML, Reitsma JB, de Vries GJ, Gersons BP, Olff M. Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis. Br J Psychiatry 2007; 191:387–392PubMedCrossRefGoogle Scholar
  159. 159.
    Strawn JR, Geracioti TD Jr. Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder. Depression Anxiety 2008; 25(3):260–271CrossRefGoogle Scholar
  160. 160.
    Neumann ID. Involvement of the brain oxytocin system in stress coping: interactions with the hypothalamo-pituitary-adrenal axis. Prog Brain Res 2002; 139:147–162PubMedCrossRefGoogle Scholar
  161. 161.
    Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP. Developmental neurobiology of childhood stress and trauma. Psychiatric Clin N Am 2002; 25(2):397–426, vii–viiiCrossRefGoogle Scholar
  162. 162.
    Bell CJ, Nicholson H, Mulder RT, Luty SE, Joyce PR. Plasma oxytocin levels in depression and their correlation with the temperament dimension of reward dependence. J Psychopharmacol 2006; 20(5):656–660PubMedCrossRefGoogle Scholar
  163. 163.
    Scantamburlo G, Hansenne M, Fuchs S, et al. Plasma oxytocin levels and anxiety in patients with major depression. Psychoneuroendocrinology 2007; 32(4):407–410PubMedCrossRefGoogle Scholar
  164. 164.
    Gordon I, Zagoory-Sharon O, Schneiderman I, Leckman JF, Weller A, Feldman R. Oxytocin and cortisol in romantically unattached young adults: associations with bonding and psychological distress. Psychophysiology 2008; 45(3):349–352PubMedCrossRefGoogle Scholar
  165. 165.
    Purba JS, Hoogendijk WJ, Hofman MA, Swaab DF. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Archiv General Psychiatry 1996; 53(2):137–143CrossRefGoogle Scholar
  166. 166.
    Anderberg UM, Uvnas-Moberg K. Plasma oxytocin levels in female fibromyalgia syndrome patients. Zeitschrift fur Rheumatologie 2000; 59(6):373–379PubMedCrossRefGoogle Scholar
  167. 167.
    Esch T, Stefano GB. The Neurobiology of Love. Neuro Endocrinol Lett 2005; 26(3):175–192PubMedGoogle Scholar
  168. 168.
    Frasch A, Zetzsche T, Steiger A, Jirikowski GF. Reduction of plasma oxytocin levels in patients suffering from major depression. Adv Exp Med Biol 1995; 395:257–258PubMedGoogle Scholar
  169. 169.
    Pitts AF, Samuelson SD, Meller WH, Bissette G, Nemeroff CB, Kathol RG. Cerebrospinal fluid corticotropin-releasing hormone, vasopressin, and oxytocin concentrations in treated patients with major depression and controls. Biol Psychiatry 1995; 38(5):330–335PubMedCrossRefGoogle Scholar
  170. 170.
    van Londen L, Goekoop JG, van Kempen GM, et al. Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacology 1997; 17(4):284–292PubMedCrossRefGoogle Scholar
  171. 171.
    Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 2005; 4(2):141–194PubMedCrossRefGoogle Scholar
  172. 172.
    Feifel D, Reza T. Oxytocin modulates psychotomimetic-induced deficits in sensorimotor gating. Psychopharmacology 1999; 141(1):93–98PubMedCrossRefGoogle Scholar
  173. 173.
    Beckmann H, Lang RE, Gattaz WF. Vasopressin—oxytocin in cerebrospinal fluid of schizophrenic patients and normal controls. Psychoneuroendocrinology 1985; 10(2):187–191PubMedCrossRefGoogle Scholar
  174. 174.
    Glovinsky D, Kalogeras KT, Kirch DG, Suddath R, Wyatt RJ. Cerebrospinal fluid oxytocin concentration in schizophrenic patients does not differ from control subjects and is not changed by neuroleptic medication. Schizophr Res 1994; 11(3):273–276PubMedCrossRefGoogle Scholar
  175. 175.
    Uvnas-Moberg K, Alster P, Svensson TH. Amperozide and clozapine but not haloperidol or raclopride increase the secretion of oxytocin in rats. Psychopharmacology 1992; 109(4):473–476PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Raz Levin
    • 1
    • 2
    Email author
  • Shany Edelman
    • 1
    • 2
  • Idan Shalev
    • 1
    • 2
  • Richard P. Ebstein
    • 3
    • 1
  • Uriel Heresco-Levy
    • 4
    • 1
  1. 1.Herzog Memorial HospitalJerusalemIsrael
  2. 2.Neurobiology DepartmentHebrew UniversityJerusalemIsrael
  3. 3.Department of PsychologyHebrew UniversityJerusalemIsrael
  4. 4.Department of Psychiatry, Hadassah Medical SchoolHebrew UniversityJerusalemIsrael

Personalised recommendations