Advertisement

Recombinant Human Erythropoietin: Novel Approach to Neuroprotection and Neuroregeneration in Schizophrenia

  • Hannelore EhrenreichEmail author
  • Claudia Bartels
  • Henning Krampe
  • Martin Begemann
Chapter

Abstract

Mainly due to modern imaging technology, schizophrenia is increasingly recognized as a developmental disease with an additional neurodegenerative component, reflected by cognitive decline and progressive loss of cortical gray matter. Even though the old term dementia praecox already implies the presence of a degenerative process, meaning loss of once acquired cognitive functions, the degenerative aspect of schizophrenia has been disregarded for decades. Dealing with a neurodegenerative disease automatically brings on the idea of employing neuroprotective/neurotrophic add-on strategies in its treatment. Erythropoietin (EPO) evolved as an ideal candidate compound for neuroprotection in various human brain diseases, but particularly in schizophrenia, due to its capability of combating a spectrum of pathophysiological processes operational during the progression of schizophrenic psychosis. In the nervous system, EPO acts not only anti-oxidative, anti-inflammatory, and anti-apoptotic, thereby antagonizing driving forces of neurodegeneration, but also in a neurotrophic and plasticity ameliorating fashion, thus targeting intrinsic problems of the schizophrenic phenotype. In fact, EPO improves cognitive functioning in mice and lastingly enhances hippocampal longterm potentiation among other features of neuronal plasticity, essential for learning and memory processes. EPO also prevents the development of slowly progressing global brain atrophy in a mouse model of chronic non-gliotic neurodegeneration and reduces haloperidol-induced cell death in primary hippocampal neuronal cultures. In preparation of a first trial on EPO in schizophrenia, we wondered whether EPO can penetrate an intact blood-brain-barrier. Using Indium111-labeled EPO, we demonstrated that EPO enriched within brain tissue in healthy and even more so in schizophrenic individuals, most likely explained by the higher density of EPOR expression in frontal cortex and hippocampus of the latter. Based on all these grounds, we performed a double-blind, placebo-controlled, randomized multicenter trial. Treatment over 12 weeks with weekly high-dose intravenous EPO led to significant improvement of cognitive performance in chronic schizophrenic men. Moreover, it delayed progressive cortical gray matter loss in schizophrenia-relevant brain areas as demonstrated by voxel-based morphometric magnetic resonance imaging analysis. Encouraged by these findings, an EPO treatment trial including patients with first-episode schizophrenia has been planned.

Keywords

Cognition Gray matter loss Dementia praecox Add-on treatment Mouse model Behavior Neuropsychology Learning and memory Voxel-based morphometry 

Abbreviations

CNP-ase

cyclic nucleotide phosphodiesterase

EPO

erythropoietin

EPOR

erythropoietin receptor

GABA

gamma-aminobutyric acid

GAD67

glutamic acid decarboxylase 67

HIF

hypoxia inducible factor

MRI

magnetic resonance imaging

RBANS

Repeatable Battery for the Assessment of Neuropsychological Status

SPECT

single photon emission computed tomography

VBM

voxel-based morphometry

WCST

Wisconsin Card Sorting Test

Notes

Acknowledgements

This work has been supported by the Max Planck Society, by several private donations, as well as by the DFG Center for Molecular Physiology of the Brain (CMPB). The authors would like to thank Wiebke Timner for excellent editorial assistance.

References

  1. 1.
    Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev 1992; 72:449–489PubMedGoogle Scholar
  2. 2.
    Konishi Y, Chui DH, Hirose H, et al. Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res 1993; 609:29–35PubMedCrossRefGoogle Scholar
  3. 3.
    Masuda S, Nagao M, Takahata K, et al. Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem 1993; 268:11208–11216PubMedGoogle Scholar
  4. 4.
    Masuda S, Okano M, Yamagishi K, et al. A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J Biol Chem 1994; 269:19488–19493PubMedGoogle Scholar
  5. 5.
    Juul SE, Anderson DK, Li Y, Christensen RD. Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 1998; 43:40–49PubMedCrossRefGoogle Scholar
  6. 6.
    Lewczuk P, Hasselblatt M, Kamrowski-Kruck H, et al. H. Survival of hippocampal neurons in culture upon hypoxia: effect of erythropoietin. Neuroreport 2000; 11:3485–3488PubMedCrossRefGoogle Scholar
  7. 7.
    Dame C, Bartmann P, Wolber E, et al. Erythropoietin gene expression in different areas of the developing human central nervous system. Brain Res Dev Brain Res 2000; 125:69–74PubMedCrossRefGoogle Scholar
  8. 8.
    Ehrenreich H, Sirén AL. Neuroprotection—what does it mean?—What means do we have? Eur Arch Psychiatry Clin Neurosci 2001; 251:149–151PubMedCrossRefGoogle Scholar
  9. 9.
    Sirén AL, Ehrenreich H. Erythropoietin—a novel concept for neuroprotection. Eur Arch Psychiatry Clin Neurosci 2001; 251:179–184PubMedCrossRefGoogle Scholar
  10. 10.
    Gassmann M, Heinicke K, Soliz J, et al. Non-erythroid functions of erythropoietin. Adv Exp Med Biol 2003; 543:323–330PubMedCrossRefGoogle Scholar
  11. 11.
    Ehrenreich H. Medicine. A boost for translational neuroscience. Science 2004; 305:184–185PubMedCrossRefGoogle Scholar
  12. 12.
    Juul S. Recombinant erythropoietin as a neuroprotective treatment: in vitro and in vivo models. Clin Perinatol 2004; 31:129–142PubMedCrossRefGoogle Scholar
  13. 13.
    Knabe W, Knerlich F, Washausen S, et al. Expression patterns of erythropoietin and its receptor in the developing midbrain. Anat Embryol (Berl) 2004; 207:503–512CrossRefGoogle Scholar
  14. 14.
    Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 2005; 6:484–494PubMedCrossRefGoogle Scholar
  15. 15.
    Ehrenreich H, Hasselblatt M, Knerlich F, et al. A hematopoietic growth factor, thrombopoietin, has a proapoptotic role in the brain. Proc Natl Acad Sci USA 2005; 102:862–867PubMedCrossRefGoogle Scholar
  16. 16.
    Hasselblatt M, Ehrenreich H, Sirén AL. The brain erythropoietin system and its potential for therapeutic exploitation in brain disease. J Neurosurg Anesthesiol 2006; 18:132–138PubMedCrossRefGoogle Scholar
  17. 17.
    Bartels C, Späte K, Krampe H, Ehrenreich H. Recombinant human erythropoietin: Novel strategies for neuroprotective/neuroregenerative treatment of multiple sclerosis. Therapeutic Adv Neurol Disorders 2008; 1:193–206CrossRefGoogle Scholar
  18. 18.
    Sirén AL, Fasshauer T, Bartels C, Ehrenreich H. Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics 2009; 6:108–127PubMedCrossRefGoogle Scholar
  19. 19.
    Bauer C, Kurtz A. Oxygen sensing in the kidney and its relation to erythropoietin production. Annu Rev Physiol 1989; 51:845–856PubMedCrossRefGoogle Scholar
  20. 20.
    Chikuma M, Masuda S, Kobayashi T, et al. Tissue-specific regulation of erythropoietin production in the murine kidney, brain, and uterus. Am J Physiol Endocrinol Metab 2000; 279:E1242–1248Google Scholar
  21. 21.
    Sharp FR, Bernaudin M. HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 2004; 5:437–448PubMedCrossRefGoogle Scholar
  22. 22.
    Jelkmann W. Erythropoietin after a century of research: younger than ever. Eur J Haematol 2007; 78:183–205PubMedCrossRefGoogle Scholar
  23. 23.
    Eschbach JW, Egrie JC, Downing MR, et al. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med 1987; 316:73–78PubMedCrossRefGoogle Scholar
  24. 24.
    Bocker-Meffert S, Rosenstiel P, Rohl C, et al. Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci 2002; 43:2021–2026PubMedGoogle Scholar
  25. 25.
    Sakanaka M, Wen TC, Matsuda S, et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 1998; 95:4635–4640PubMedCrossRefGoogle Scholar
  26. 26.
    Bernaudin M, Marti HH, Roussel S, et al E. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 1999; 19:643–651PubMedCrossRefGoogle Scholar
  27. 27.
    Gorio A, Gokmen N, Erbayraktar S, et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci USA 2002; 99:9450–9455PubMedCrossRefGoogle Scholar
  28. 28.
    Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 2000; 97:10526–10531PubMedCrossRefGoogle Scholar
  29. 29.
    Celik M, Gokmen N, Erbayraktar S, et al. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci USA 2002; 99:2258–2263PubMedCrossRefGoogle Scholar
  30. 30.
    Csete M, Rodriguez L, Wilcox M, Chadalavada S. Erythropoietin receptor is expressed on adult rat dopaminergic neurons and erythropoietin is neurotrophic in cultured dopaminergic neuroblasts. Neurosci Lett 2004; 359:124–126PubMedCrossRefGoogle Scholar
  31. 31.
    Diem R, Sättler MB, Merkler D, et al. Combined therapy with methylprednisolone and erythropoietin in a model of multiple sclerosis. Brain 2005; 128:375–385PubMedCrossRefGoogle Scholar
  32. 32.
    Genc S, Akhisaroglu M, Kuralay F, Genc K. Erythropoietin restores glutathione peroxidase activity in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine-induced neurotoxicity in C57BL mice and stimulates murine astroglial glutathione peroxidase production in vitro. Neurosci Lett 2002; 321:73–76PubMedCrossRefGoogle Scholar
  33. 33.
    Genc S, Kuralay F, Genc K, et al. Erythropoietin exerts neuroprotection in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/BL mice via increasing nitric oxide production. Neurosci Lett 2001; 298:139–141PubMedCrossRefGoogle Scholar
  34. 34.
    Grasso G, Buemi M, Alafaci C, et al. Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc Natl Acad Sci USA 2002; 99:5627–5631PubMedCrossRefGoogle Scholar
  35. 35.
    Grimm C, Wenzel A, Groszer M, et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 2002; 8:718–724PubMedCrossRefGoogle Scholar
  36. 36.
    Sadamoto Y, Igase K, Sakanaka M, et al. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 1998; 253:26–32PubMedCrossRefGoogle Scholar
  37. 37.
    Sättler MB, Merkler D, Maier K, et al. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 2004; 11(Suppl 2):S181–S192Google Scholar
  38. 38.
    Springborg JB, Ma X, Rochat P, et al. A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats. Br J Pharmacol 2002; 135:823–829PubMedCrossRefGoogle Scholar
  39. 39.
    Villa P, Bigini P, Mennini T, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 2003; 198:971–975PubMedCrossRefGoogle Scholar
  40. 40.
    Bianchi R, Buyukakilli B, Brines M, et al. Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci USA 2004; 101:823–828PubMedCrossRefGoogle Scholar
  41. 41.
    Campana WM, Myers RR. Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury. Faseb J 2001; 15:1804–1806PubMedGoogle Scholar
  42. 42.
    Erbayraktar S, Grasso G, Sfacteria A, et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci USA 2003; 100:6741–6746PubMedCrossRefGoogle Scholar
  43. 43.
    Keswani SC, Buldanlioglu U, Fischer A, et al. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann Neurol 2004; 56:815–826PubMedCrossRefGoogle Scholar
  44. 44.
    Kaiser K, Texier A, Ferrandiz J, et al. Recombinant human erythropoietin prevents the death of mice during cerebral malaria. J Infect Dis 2006; 193:987–995PubMedCrossRefGoogle Scholar
  45. 45.
    Chang KH, Tam M, Stevenson MM. Modulation of the course and outcome of blood-stage malaria by erythropoietin-induced reticulocytosis. J Infect Dis 2004; 189:735–743PubMedCrossRefGoogle Scholar
  46. 46.
    Sirén AL, Radyushkin K, Boretius S, et al. Global brain atrophy after unilateral parietal lesion and its prevention by erythropoietin. Brain 2006; 129:480–489PubMedCrossRefGoogle Scholar
  47. 47.
    Tsai PT, Ohab JJ, Kertesz N, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 2006; 26:1269–1274PubMedCrossRefGoogle Scholar
  48. 48.
    Sirén AL, Fratelli M, Brines M, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 2001; 98:4044–4049PubMedCrossRefGoogle Scholar
  49. 49.
    Wiese L, Hempel C, Penkowa M, et al. Recombinant human erythropoietin increases survival and reduces neuronal apoptosis in a murine model of cerebral malaria. Malar J 2008; 7:3PubMedCrossRefGoogle Scholar
  50. 50.
    Grunfeld JF, Barhum Y, Blondheim N, et al. Erythropoietin delays disease onset in an amyotrophic lateral sclerosis model. Exp Neurol 2007; 204:260–263PubMedCrossRefGoogle Scholar
  51. 51.
    Koh SH, Kim Y, Kim HY, et al. Recombinant human erythropoietin suppresses symptom onset and progression of G93A-SOD1 mouse model of ALS by preventing motor neuron death and inflammation. Eur J Neurosci 2007; 25:1923–1930PubMedCrossRefGoogle Scholar
  52. 52.
    Ehrenreich H, Hasselblatt M, Dembowski C, et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 2002; 8:495–505PubMedGoogle Scholar
  53. 53.
    Georgopoulos D, Matamis D, Routsi C, et al. Recombinant human erythropoietin therapy in critically ill patients: a dose-response study [ISRCTN48523317]. Crit Care 2005; 9:R508–515CrossRefGoogle Scholar
  54. 54.
    Corwin HL, Gettinger A, Fabian TC, et al. Efficacy and safety of epoetin alfa in critically ill patients. N Engl J Med 2007; 357:965–976PubMedCrossRefGoogle Scholar
  55. 55.
    Tseng MY, Hutchinson PJ, Richards HK, et al. Acute systemic erythropoietin therapy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemorrhage: a Phase II randomized, double-blind, placebo-controlled trial. J Neurosurg 2009; 111:171–180Google Scholar
  56. 56.
    Ehrenreich H, Hinze-Selch D, Stawicki S, et al. Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry 2007; 12:206–220PubMedCrossRefGoogle Scholar
  57. 57.
    Ehrenreich H, Fischer B, Norra C, et al. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain 2007; 130:2577–2588PubMedCrossRefGoogle Scholar
  58. 58.
    Morishita E, Masuda S, Nagao M, et al. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 1997; 76:105–116PubMedCrossRefGoogle Scholar
  59. 59.
    Sirén AL, Knerlich F, Poser W, et al. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol 2001; 101:271–276PubMedGoogle Scholar
  60. 60.
    Sasaki R, Masuda S, Nagao M. Pleiotropic functions and tissue-specific expression of erythropoietin. News Physiol Sci 2001; 16:110–113PubMedGoogle Scholar
  61. 61.
    Marti HH. Erythropoietin and the hypoxic brain. J Exp Biol 2004; 207:3233–3242PubMedCrossRefGoogle Scholar
  62. 62.
    Sairanen T, Karjalainen-Lindsberg ML, Paetau A, et al. Apoptosis dominant in the periinfarct area of human ischaemic stroke—a possible target of antiapoptotic treatments. Brain 2006; 129:189–199PubMedCrossRefGoogle Scholar
  63. 63.
    Noguchi CT, Asavaritikrai P, Teng R, Jia Y. Role of erythropoietin in the brain. Crit Rev Oncol Hematol 2007; 64:159–171PubMedCrossRefGoogle Scholar
  64. 64.
    Arcasoy MO. The non-haematopoietic biological effects of erythropoietin. Br J Haematol 2008; 141:14–31PubMedCrossRefGoogle Scholar
  65. 65.
    Browning MD, Dudek EM, Rapier JL, et al. Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry 1993; 34:529–535PubMedCrossRefGoogle Scholar
  66. 66.
    Akbarian S, Kim JJ, Potkin SG, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52:258–266PubMedCrossRefGoogle Scholar
  67. 67.
    Keshavan MS. Development, disease and degeneration in schizophrenia: a unitary pathophysiological model. J Psychiatr Res 1999; 33:513–521PubMedCrossRefGoogle Scholar
  68. 68.
    Volk DW, Austin MC, Pierri JN, et al. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 2000; 57:237–245PubMedCrossRefGoogle Scholar
  69. 69.
    Hakak Y, Walker JR, Li C, et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98:4746–4751PubMedCrossRefGoogle Scholar
  70. 70.
    Vawter MP, Thatcher L, Usen N, et al. Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7:571–578PubMedCrossRefGoogle Scholar
  71. 71.
    Davis KL, Haroutunian V. Global expression-profiling studies and oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362:758PubMedCrossRefGoogle Scholar
  72. 72.
    Hof PR, Haroutunian V, Friedrich VL Jr, et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53:1075–1085PubMedCrossRefGoogle Scholar
  73. 73.
    Dracheva S, Davis KL, Chin B, et al. Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol Dis 2006; 21:531–540PubMedCrossRefGoogle Scholar
  74. 74.
    Bernstein HG, Krause S, Krell D, et al. Strongly reduced number of parvalbumin-immunoreactive projection neurons in the mammillary bodies in schizophrenia: further evidence for limbic neuropathology. Ann NY Acad Sci 2007; 1096:120–127PubMedCrossRefGoogle Scholar
  75. 75.
    Schmitt A, Parlapani E, Gruber O, et al. Impact of neuregulin-1 on the pathophysiology of schizophrenia in human post-mortem studies. Eur Arch Psychiatry Clin Neurosci 2008; 258 Suppl 5:35–39Google Scholar
  76. 76.
    van Berckel BN, Bossong MG, Boellaard R, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008; 64:820–822PubMedCrossRefGoogle Scholar
  77. 77.
    Marti HH, Wenger RH, Rivas LA, et al. Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 1996; 8:666–676PubMedCrossRefGoogle Scholar
  78. 78.
    Ehrenreich H, Degner D, Meller J, et al. Erythropoietin: a candidate compound for neuroprotection in schizophrenia. Mol Psychiatry 2004; 9:42–54PubMedGoogle Scholar
  79. 79.
    Eid T, Brines ML, Cerami A, et al. Increased expression of erythropoietin receptor on blood vessels in the human epileptogenic hippocampus with sclerosis. J Neuropathol Exp Neurol 2004; 63:73–83PubMedGoogle Scholar
  80. 80.
    Chung YH, Joo KM, Kim YS, et al. Enhanced expression of erythropoietin in the central nervous system of SOD1(G93A) transgenic mice. Brain Res 2004; 1016:272–280PubMedCrossRefGoogle Scholar
  81. 81.
    Brettschneider J, Widl K, Ehrenreich H, et al. Erythropoietin in the cerebrospinal fluid in neurodegenerative diseases. Neurosci Lett 2006; 404:347–351PubMedCrossRefGoogle Scholar
  82. 82.
    Assaraf MI, Diaz Z, Liberman A, et al. Brain erythropoietin receptor expression in Alzheimer disease and mild cognitive impairment. J Neuropathol Exp Neurol 2007; 66:389–398PubMedCrossRefGoogle Scholar
  83. 83.
    Falkai P, Honer WG, David S, et al. No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 1999; 25:48–53PubMedCrossRefGoogle Scholar
  84. 84.
    Stevens JR, Casanova MF. Is there a neuropathology of schizophrenia? Biol Psychiatry 1988; 24:123–128PubMedCrossRefGoogle Scholar
  85. 85.
    Woods BT. Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 1998; 155:1661–1670PubMedGoogle Scholar
  86. 86.
    Lieberman JA. Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 1999; 46:729–739PubMedCrossRefGoogle Scholar
  87. 87.
    Weinberger DR, McClure RK. Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry: what is happening in the schizophrenic brain? Arch Gen Psychiatry 2002; 59:553–558PubMedCrossRefGoogle Scholar
  88. 88.
    de Haan L, Bakker JM. Overview of neuropathological theories of schizophrenia: from degeneration to progressive developmental disorder. Psychopathology 2004; 37:1–7PubMedCrossRefGoogle Scholar
  89. 89.
    Rapoport JL, Addington AM, Frangou S, Psych MR. The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 2005; 10:434–449PubMedCrossRefGoogle Scholar
  90. 90.
    Kraepelin E. Dementia Praecox and Paraphrenia. E & S Livinstone, Edingburgh, UK; 1919Google Scholar
  91. 91.
    Ho BC, Andreasen NC, Nopoulos P, et al. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry 2003; 60:585–594PubMedCrossRefGoogle Scholar
  92. 92.
    Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 2005; 162:2233–2245PubMedCrossRefGoogle Scholar
  93. 93.
    Gur RE, Keshavan MS, Lawrie SM. Deconstructing psychosis with human brain imaging. Schizophr Bull 2007; 33:921–931PubMedCrossRefGoogle Scholar
  94. 94.
    Hulshoff Pol HE, Kahn RS. What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 2008; 34:354–366CrossRefGoogle Scholar
  95. 95.
    Thompson PM, Vidal C, Giedd JN, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001; 98:11650–11655PubMedCrossRefGoogle Scholar
  96. 96.
    Sargin D, Hassouna I, Sperling S, et al. Uncoupling of neurodegeneration and gliosis in a murine model of juvenile cortical lesion. Glia 2009; 57:693–702PubMedCrossRefGoogle Scholar
  97. 97.
    Pillai A, Mahadik SP. Differential effects of haloperidol and olanzapine on the expression of erythropoietin and its receptor in rat hippocampus and striatum. J Neurochem 2006; 98:1411–1422PubMedCrossRefGoogle Scholar
  98. 98.
    Randolph C. RBANS Manual – Repeatable Battery for the Assessment of Neuropsy- chological Status. Psychological Corporation, Harcourt, TX; 1998Google Scholar
  99. 99.
    Kongs SK, Thompson LL, Iverson GL, Heaton RK. Wisconsin Card Sorting Test – 64 Card Version. Psychological Assessment Resources, Odessa, FL; 2000Google Scholar
  100. 100.
    Gold JM, Queern C, Iannone VN, Buchanan RW. Repeatable battery for the assessment of neuropsychological status as a screening test in schizophrenia I: sensitivity, reliability, and validity. Am J Psychiatry 1999; 156:1944–1950PubMedGoogle Scholar
  101. 101.
    Pedersen A, Diedrich M, Kaestner F, et al. Memory impairment correlates with increased S100B serum concentrations in patients with chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1789–1792PubMedCrossRefGoogle Scholar
  102. 102.
    Rothermundt M, Ponath G, Glaser T, et al. S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. Neuropsychopharmacology 2004; 29:1004–1011PubMedCrossRefGoogle Scholar
  103. 103.
    Schroeter ML, Abdul-Khaliq H, Fruhauf S, et al. Serum S100B is increased during early treatment with antipsychotics and in deficit schizophrenia. Schizophr Res 2003; 62:231–236PubMedCrossRefGoogle Scholar
  104. 104.
    Adamcio B, Sargin D, Stradomska A, et al. Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biol 2008; 6:37PubMedCrossRefGoogle Scholar
  105. 105.
    El-Kordi A, Radyushkin K, Ehrenreich H. Erythropoietin improves operant conditioning and stability of performance in mice. BMC Biol 2009; 7:37Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hannelore Ehrenreich
    • 1
    Email author
  • Claudia Bartels
    • 1
  • Henning Krampe
    • 1
  • Martin Begemann
    • 1
  1. 1.Division of Clinical NeuroscienceMax Planck Institute of Experimental MedicineGöttingenGermany

Personalised recommendations