Molecular Diagnostics of Staphylococcus aureus

  • Jiří DoškařEmail author
  • Roman Pantůček
  • Vladislava Růžičková
  • Ivo Sedláček
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


The bacterial species of the genus Staphylococcus are important human and animal pathogens which cause severe infectious diseases. The most pathogenic species Staphylococcus aureus is an extraordinary versatile pathogen and the major causative agent of numerous hospital- and community acquired infections. The disease spectrum includes abscesses, bacteremia, central nervous system infections, endocarditis, osteomyelitis, pneumonia, urinary tract infections, and syndromes caused by exotoxins, including staphylococcal scaled skin syndrome, toxic shock syndrome and food poisoning. The spread, survival and prevalence of antibiotic resistant clones of S. aureus are immensely important problems for human health. Apart from the major pathogen S. aureus, other species of the genus Staphylococcus may also be involved in serious infections. The rapid and accurate identification of the disease causing agent is therefore a prerequisite for disease control as well as for epidemiological surveillance. Modern molecular methods for the identification and typing of bacterial species are based on their genomic and proteomic analysis, which is very advantageous compared to standard biotyping methods. For species identification of staphylococcal isolates, the most frequently used molecular method is amplification of conserved gene sequences by PCR. Genotypic methods focus on the characterization of chromosomal, plasmid, or total genomic DNA. The objectives of these methods are to assess relevant parameters of the staphylococcal genome and to detect polymorphism of DNA sequences with either direct or indirect methods. All the genotypic methods are aimed in generation of DNA fingerprints specific for individual species and/or isolates of distinct clonal lineages. S. aureus genomes comprise a core component consisting of genes present in all of the strains, and approximately 22% of the genome comprises an “accessory genome”, containing genes that encode a diverse array of non-essential functions, ranging from virulence, drug and metal resistance to substrate utilization and miscellaneous metabolism. The accessory genome is made up of a mobile genetic element (MGE), e.g. bacteriophages, pathogenicity islands, staphylococcal cassette chromosomes, plasmids and transposons. Given the steadily varying content of MGE and of their individual types in the S. aureus strains, these elements are the sources of genetic polymorphism and are one of the most important targets of molecular typing methods for S. aureus. Some S. aureus strains produce one or more exoproteins, which include toxic shock syndrome toxin-1, the staphylococcal enterotoxins, the exfoliative toxins and Panton-Valentine leukocidin. PCR for detection of relevant genes in S. aureus strains is the most commonly used method for the diagnostics of toxigenic staphylococci.


Staphylococcus aureus molecular diagnostics species identification mobile genetics elements bacteriophages typing methods toxigenic strains 



This work was supported by grants of the Ministry of Education, Youth and Sports of the Czech Republic (MSM0021622415 and MSM0021622416), Czech Science Foundation (310/09/0459) and the European Union (LSHM-CT-2006-019064).


  1. Ackermann HW, DuBow MS (1987) Viruses of procaryotes, vol 2: natural groups of bacteriophages. CRC Press, Boca Raton, FL, pp 101–155Google Scholar
  2. Agius P, Kreiswirth B, Naidich S, Bennett K (2007) Typing Staphylococcus aureus using the spa gene and novel distance measures. IEEE/ACM Trans Comput Biol Bioinform 4:693–704PubMedCrossRefGoogle Scholar
  3. Ahmadinejad M, Snyder JW, Perlin MH (1998) A combined molecular approach to screen for mec gene variants from methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 30:17–20PubMedCrossRefGoogle Scholar
  4. Aires de Sousa M, Sanches IS, Ferro ML, Vaz MJ, Saraiva Z, Tendeiro T, Serra J, de Lencastre H (1998) Intercontinental spread of a multidrug-resistant methicillin-resistant Staphylococcus aureus clone. J Clin Microbiol 36:2590–2596PubMedGoogle Scholar
  5. Aires de Sousa M, Boye K, de Lencastre H, Deplano A, Enright MC, Etienne J, Friedrich A, Harmsen D, Holmes A, Huijsdens XW, Kearns AM, Mellmann A, Meugnier H, Rasheed JK, Spalburg E, Strommenger B, Struelens MJ, Tenover FC, Thomas J, Vogel U, Westh H, Xu J, Witte W (2006) High interlaboratory reproducibility of DNA sequence-based typing of bacteria in a multicenter study. J Clin Microbiol 44:619–621PubMedCrossRefGoogle Scholar
  6. Akineden O, Annemuller C, Hassan AA, Lammler C, Wolter W, Zschock M (2001) Toxin genes and other characteristics of Staphylococcus aureus isolates from milk of cows with mastitis. Clin Diagn Lab Immunol 8:959–964PubMedGoogle Scholar
  7. Altboum Z, Hertman I, Sarid S (1985) Penicillinase plasmid-linked genetic determinants for enterotoxins B and C1 production in Staphylococcus aureus. Infect Immun 47:514–521PubMedGoogle Scholar
  8. Altwegg M, Mayer LW (1989) Bacterial molecular epidemiology based on a nonradioactive probe complementary to ribosomal RNA. Res Microbiol 140:325–333PubMedCrossRefGoogle Scholar
  9. Andrei A, Zervos MJ (2006) The application of molecular techniques to the study of hospital infection. Arch Pathol Lab Med 130:662–668PubMedGoogle Scholar
  10. Andollina A, De Cesare A, Bertoni G, Modelli L, Manfreda G (2004) Identification and genetic characterisation of orthopaedic Staphylococcus isolates collected in Italy by automated EcoRI ribotyping. FEMS Microbiol Lett 234:275–280PubMedCrossRefGoogle Scholar
  11. Anthony RM, Brown TJ, French GL (2000) Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J Clin Microbiol 38:781–788PubMedGoogle Scholar
  12. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827PubMedCrossRefGoogle Scholar
  13. Baba T, Bae T, Schneewind O, Takeuchi F, Hiramatsu K (2008) Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190:300–310PubMedCrossRefGoogle Scholar
  14. Bannerman TL, Kloos WE (1991) Staphylococcus capitis subsp. ureolyticus subsp. nov. from human skin. Int J Syst Bacteriol 41:144–147PubMedCrossRefGoogle Scholar
  15. Barry T, Colleran G, Glennon M, Dunican LK, Gannon F (1991) The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl 1:51–56PubMedCrossRefGoogle Scholar
  16. Barski P, Piechowicz L, Galinski J, Kur J (1996) Rapid assay for detection of methicillin-resistant Staphylococcus aureus using multiplex PCR. Mol Cell Probes 10:471–475PubMedCrossRefGoogle Scholar
  17. Becker K, Roth R, Peters G (1998) Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J Clin Microbiol 36:2548–2553PubMedGoogle Scholar
  18. Becker K, Harmsen D, Mellmann A, Meier C, Schumann P, Peters G, von Eiff C (2004) Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J Clin Microbiol 42:4988–4995PubMedCrossRefGoogle Scholar
  19. Behme RJ, Shuttleworth R, McNabb A, Colby WD (1996) Identification of staphylococci with a self-educating system using fatty acid analysis and biochemical tests. J Clin Microbiol 34:3075–3084PubMedGoogle Scholar
  20. Berber I, Cokmus C, Atalan E (2003) Comparison of Staphylococcus spp. cellular and extracellular proteins by SDS-PAGE. Mikrobiologiia 72:54–59PubMedGoogle Scholar
  21. Bergdoll MS (1983) Enterotoxins. In: Easmon CSF, Adlam C (eds) Staphylococci and staphylococcal infections. Academic Press, London, UKGoogle Scholar
  22. Berglund C, Ito T, Ikeda M, Ma XX, Soderquist B, Hiramatsu K (2008) Novel type of staphylococcal cassette chromosome mec in a methicillin-resistant Staphylococcus aureus strain isolated in Sweden. Antimicrob Agents Chemother 52:3512–3516PubMedCrossRefGoogle Scholar
  23. Berglund C, Ito T, Ma XX, Ikeda M, Watanabe S, Soderquist B, Hiramatsu K (2009) Genetic diversity of methicillin-resistant Staphylococcus aureus carrying type IV SCCmec in Orebro County and the western region of Sweden. J Antimicrob Chemother 63:32–41PubMedCrossRefGoogle Scholar
  24. Betley MJ, Mekalanos JJ (1985) Staphylococcal enterotoxin A is encoded by phage. Science 229:185–187PubMedCrossRefGoogle Scholar
  25. Blanc DS, Lugeon C, Wenger A, Siegrist HH, Francioli P (1994) Quantitative antibiogram typing using inhibition zone diameters compared with ribotyping for epidemiological typing of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 32:2505–2509PubMedGoogle Scholar
  26. Blanc DS, Francioli P, Hauser PM (2002) Poor value of pulsed-field gel electrophoresis to investigate long-term scale epidemiology of methicillin-resistant Staphylococcus aureus. Infect Genet Evol 2:145–148PubMedCrossRefGoogle Scholar
  27. Blumberg HM, Rimland D, Kiehlbauch JA, Terry PM, Wachsmuth IK (1992) Epidemiologic typing of Staphylococcus aureus by DNA restriction fragment length polymorphisms of rRNA genes: elucidation of the clonal nature of a group of bacteriophage-nontypeable, ciprofloxacin-resistant, methicillin-susceptible S. aureus isolates. J Clin Microbiol 30:362–369PubMedGoogle Scholar
  28. Boerema JA, Clemens R, Brightwell G (2006) Evaluation of molecular methods to determine enterotoxigenic status and molecular genotype of bovine, ovine, human and food isolates of Staphylococcus aureus. Int J Food Microbiol 107:192–201PubMedCrossRefGoogle Scholar
  29. Bohach GA, Fast DJ, Nelson RD, Schlievert PM (1990) Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol 17:251–272PubMedCrossRefGoogle Scholar
  30. Bonnstetter KK, Wolter DJ, Tenover FC, McDougal LK, Goering RV (2007) Rapid multiplex PCR assay for identification of USA300 community-associated methicillin-resistant Staphylococcus aureus isolates. J Clin Microbiol 45:141–146PubMedCrossRefGoogle Scholar
  31. Booth MC, Pence LM, Mahasreshti P, Callegan MC, Gilmore MS (2001) Clonal associations among Staphylococcus aureus isolates from various sites of infection. Infect Immun 69:345–352PubMedCrossRefGoogle Scholar
  32. Borecká P, Rosypal S, Pantůček R, Doškař J (1996) Localization of prophages of serological group B and F on restriction fragments defined in the restriction map of Staphylococcus aureus NCTC 8325. FEMS Microbiol Lett 143:203–210PubMedCrossRefGoogle Scholar
  33. Boyle-Vavra S, Ereshefsky B, Wang CC, Daum RS (2005) Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that carries either the novel staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec type IV. J Clin Microbiol 43:4719–4730PubMedCrossRefGoogle Scholar
  34. Brakstad OG, Aasbakk K, Maeland JA (1992) Detection of Staphylococcus aureus by ­polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30:1654–1660PubMedGoogle Scholar
  35. Brakstad OG, Maeland JA, Chesneau O (1995) Comparison of tests designed to identify Staphylococcus aureus thermostable nuclease. APMIS 103:219–224PubMedCrossRefGoogle Scholar
  36. Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602PubMedCrossRefGoogle Scholar
  37. Burr MD, Pepper IL (1997) Variability in presence-absence scoring of AP PCR fingerprints affects computer matching of bacterial isolates. J Microbiol Methods 29:63–68CrossRefGoogle Scholar
  38. Carbonnelle E, Beretti JL, Cottyn S, Quesne G, Berche P, Nassif X, Ferroni A (2007) Rapid identification of staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 45:2156–2161PubMedCrossRefGoogle Scholar
  39. Carretto E, Barbarini D, Couto I, De Vitis D, Marone P, Verhoef J, De Lencastre H, Brisse S (2005) Identification of coagulase-negative staphylococci other than Staphylococcus epidermidis by automated ribotyping. Clin Microbiol Infect 11:177–184PubMedCrossRefGoogle Scholar
  40. Chambers HF (2001) The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 7:178–182PubMedCrossRefGoogle Scholar
  41. Chang HR, Lian JD, Shu KH, Cheng CH, Wu MJ, Chen CH, Lau YJ, Hu BS (2000) Use of pulsed-field gel electrophoresis in the analysis of recurrent Staphylococcus aureus infections in patients on continuous ambulatory peritoneal dialysis. Am J Nephrol 20:463–467PubMedCrossRefGoogle Scholar
  42. Chaves F, Garcia-Alvarez M, Sanz F, Alba C, Otero JR (2005) Nosocomial spread of a Staphylococcus hominis subsp. novobiosepticus strain causing sepsis in a neonatal intensive care unit. J Clin Microbiol 43:4877–4879PubMedCrossRefGoogle Scholar
  43. Chen J, Novick RP (2009) Phage-mediated intergeneric transfer of toxin genes. Science 323:139–141PubMedCrossRefGoogle Scholar
  44. Chen TR, Chiou CS, Tsen HY (2004) Use of novel PCR primers specific to the genes of staphylococcal enterotoxin G, H, I for the survey of Staphylococcus aureus strains isolated from food-poisoning cases and food samples in Taiwan. Int J Food Microbiol 92:189–197PubMedCrossRefGoogle Scholar
  45. Chesneau O, Aubert S, Morvan A, Guesdon JL, el Solh N (1992) Usefulness of the ID32 staph system and a method based on rRNA gene restriction site polymorphism analysis for species and subspecies identification of staphylococcal clinical isolates. J Clin Microbiol 30:2346–2352Google Scholar
  46. Chesneau O, Morvan A, Grimont F, Labischinski H, el Solh N (1993a) Staphylococcus pasteuri sp. nov., isolated from human, animal, and food specimens. Int J Syst Bacteriol 43:237–244Google Scholar
  47. Chesneau O, Allignet J, el Solh N (1993b) Thermonuclease gene as a target nucleotide sequence for specific recognition of Staphylococcus aureus. Mol Cell Probes 7:301–310Google Scholar
  48. Chesneau O, Morvan A, Aubert S, el Solh N (2000) The value of rRNA gene restriction site polymorphism analysis for delineating taxa in the genus Staphylococcus. Int J Syst Evol Microbiol 50:689–697Google Scholar
  49. Chongtrakool P, Ito T, Ma XX, Kondo Y, Trakulsomboon S, Tiensasitorn C, Jamklang M, Chavalit T, Song JH, Hiramatsu K (2006) Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother 50:1001–1012PubMedCrossRefGoogle Scholar
  50. Clink J, Pennington TH (1987) Staphylococcal whole-cell polypeptide analysis: evaluation as a taxonomic and typing tool. J Med Microbiol 23:41–44PubMedCrossRefGoogle Scholar
  51. Cookson BD, Robinson DA, Monk AB, Murchan S, Deplano A, de Ryck R, Struelens MJ, Scheel C, Fussing V, Salmenlinna S, Vuopio-Varkila J, Cuny C, Witte W, Tassios PT, Legakis NJ, van Leeuwen W, van Belkum A, Vindel A, Garaizar J, Haeggman S, Olsson-Liljequist B, Ransjo U, Muller-Premru M, Hryniewicz W, Rossney A, O’Connell B, Short BD, Thomas J, O’Hanlon S, Enright MC (2007) Evaluation of molecular typing methods in characterizing a European collection of epidemic methicillin-resistant Staphylococcus aureus strains: the HARMONY collection. J Clin Microbiol 45:1830–1837PubMedCrossRefGoogle Scholar
  52. Cookson B, and the HARMONY participants (2008) HARMONY – the International Union of Microbiology Societies’ European Staphylococcal Typing Network. Eurosurveillance 13(4–6):1–5Google Scholar
  53. Couch JL, Soltis MT, Betley MJ (1988) Cloning and nucleotide sequence of the type E staphylococcal enterotoxin gene. J Bacteriol 170:2954–2960PubMedGoogle Scholar
  54. Couto I, Pereira S, Miragaia M, Sanches IS, de Lencastre H (2001) Identification of clinical staphylococcal isolates from humans by internal transcribed spacer PCR. J Clin Microbiol 39:3099–3103PubMedCrossRefGoogle Scholar
  55. Couto I, Wu SW, Tomasz A, de Lencastre H (2003) Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. J Bacteriol 185:645–653PubMedCrossRefGoogle Scholar
  56. Cox RA, Conquest C, Mallaghan C, Marples RR (1995) A major outbreak of methicillin-resistant Staphylococcus aureus caused by a new phage-type (EMRSA-16). J Hosp Infect 29:87–106PubMedCrossRefGoogle Scholar
  57. Dalsgaard A, Forslund A, Fussing V (1999) Traditional ribotyping shows a higher discrimination than the automated RiboPrinter system in typing Vibrio cholerae O1. Lett Appl Microbiol 28:327–333PubMedCrossRefGoogle Scholar
  58. Davis JP, Chesney PJ, Wand PJ, LaVenture M (1980) Toxic-shock syndrome: epidemiologic features, recurrence, risk factors, and prevention. N Engl J Med 303:1429–1435PubMedCrossRefGoogle Scholar
  59. de Buyser ML, Morvan A, Grimont F, el Solh N (1989) Characterization of Staphylococcus species by ribosomal RNA gene restriction patterns. J Gen Microbiol 135:989–999Google Scholar
  60. de la Fuente R, Suarez G, Schleifer KH (1985) Staphylococcus aureus subsp. anaerobius subsp. nov., the causal agent of abscess disease of sheep. Int J Syst Bacteriol 35:99–102CrossRefGoogle Scholar
  61. Del Vecchio VG, Petroziello JM, Gress MJ, McCleskey FK, Melcher GP, Crouch HK, Lupski JR (1995) Molecular genotyping of methicillin-resistant Staphylococcus aureus via fluorophore-enhanced repetitive-sequence PCR. J Clin Microbiol 33:2141–2144PubMedGoogle Scholar
  62. Delbes C, Montel MC (2005) Design and application of a Staphylococcus-specific single strand conformation polymorphism-PCR analysis to monitor Staphylococcus populations diversity and dynamics during production of raw milk cheese. Lett Appl Microbiol 41:169–174PubMedCrossRefGoogle Scholar
  63. Deplano A, Vaneechoutte M, Verschraegen G, Struelens MJ (1997) Typing of Staphylococcus aureus and Staphylococcus epidermidis strains by PCR analysis of inter-IS256 spacer length polymorphisms. J Clin Microbiol 35:2580–2587PubMedGoogle Scholar
  64. Deplano A, Schuermans A, Van Eldere J, Witte W, Meugnier H, Etienne J, Grundmann H, Jonas D, Noordhoek GT, Dijkstra J, van Belkum A, van Leeuwen W, Tassios PT, Legakis NJ, van der Zee A, Bergmans A, Blanc DS, Tenover FC, Cookson BC, O’Neil G, Struelens MJ (2000) Multicenter evaluation of epidemiological typing of methicillin-resistant Staphylococcus aureus strains by repetitive-element PCR analysis. J Clin Microbiol 38:3527–3533PubMedGoogle Scholar
  65. Devriese LA, Hájek V, Oeding P, Meyer SA, Schleifer KH (1978) Staphylococcus hyicus (Sompolinsky 1953) comb. nov. and Staphylococcus hyicus subsp. chromogenes subsp. nov. Int J Syst Bacteriol 28:482–490CrossRefGoogle Scholar
  66. Devriese LA, Poutrel B, Kilpper-Bälz R, Schleifer KH (1983) Staphylococcus gallinarum and Staphylococcus caprae, 2 new species from animals. Int J Syst Bacteriol 33:480–486CrossRefGoogle Scholar
  67. Devriese LA, Vancanneyt M, Baele M, Vaneechoutte M, De Graef E, Snauwaert C, Cleenwerck I, Dawyndt P, Swings J, Decostere A, Haesebrouck F (2005) Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. Int J Syst Evol Microbiol 55:1569–1573PubMedCrossRefGoogle Scholar
  68. Diep BA, Perdreau-Remington F, Sensabaugh GF (2003) Clonal characterization of Staphylococcus aureus by multilocus restriction fragment typing, a rapid screening approach for molecular epidemiology. J Clin Microbiol 41:4559–4564PubMedCrossRefGoogle Scholar
  69. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739PubMedCrossRefGoogle Scholar
  70. Diep BA, Palazzolo-Ballance AM, Tattevin P, Basuino L, Braughton KR, Whitney AR, Chen L, Kreiswirth BN, Otto M, DeLeo FR, Chambers HF (2008) Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS ONE 3:e3198PubMedCrossRefGoogle Scholar
  71. Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34PubMedCrossRefGoogle Scholar
  72. Dominguez MA, de Lencastre H, Linares J, Tomasz A (1994) Spread and maintenance of a dominant methicillin-resistant Staphylococcus aureus (MRSA) clone during an outbreak of MRSA disease in a Spanish hospital. J Clin Microbiol 32:2081–2087PubMedGoogle Scholar
  73. Doškař J, Pallová P, Pantůček R, Rosypal S, Růžičková V, Pantůčková P, Kailerová J, Klepárník K, Malá Z, Boček P (2000) Genomic relatedness of Staphylococcus aureus phages of the International Typing Set and detection of serogroup A, B, and F prophages in lysogenic strains. Can J Microbiol 46:1066–1076PubMedCrossRefGoogle Scholar
  74. Drancourt M, Raoult D (2002) rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol 40:1333–1338PubMedCrossRefGoogle Scholar
  75. Du ZM, Yang RF, Guo ZB, Song YJ, Wang J (2002) Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry. Anal Chem 74:5487–5491PubMedCrossRefGoogle Scholar
  76. Dunman PM, Mounts W, McAleese F, Immermann F, Macapagal D, Marsilio E, McDougal L, Tenover FC, Bradford PA, Petersen PJ, Projan SJ, Murphy E (2004) Uses of Staphylococcus aureus GeneChips in genotyping and genetic composition analysis. J Clin Microbiol 42:4275–4283PubMedCrossRefGoogle Scholar
  77. Edwards KJ, Kaufmann ME, Saunders NA (2001) Rapid and accurate identification of coagulase-negative staphylococci by real-time PCR. J Clin Microbiol 39:3047–351PubMedCrossRefGoogle Scholar
  78. el Solh N, de Buyser ML, Morvan A, Grimont F, Salesse-Walcher S, Aubert S, Monzon-Monreo C, Chesneau O, Allignet J (1990) Use of Bacillus subtilis 16S rRNA genes as a probe to identify species, subspecies and types in the genus Staphylococcus. In: Novick RP (ed) Molecular biology of the Staphylococci. VCH, New York, pp 585–593Google Scholar
  79. Endo Y, Yamada T, Matsunaga K, Hayakawa Y, Kaidoh T, Takeuchi S (2003) Phage conversion of exfoliative toxin A in Staphylococcus aureus isolated from cows with mastitis. Vet Microbiol 96:81–90PubMedCrossRefGoogle Scholar
  80. Enright MC, Spratt BG (1999) Multilocus sequence typing. Trends Microbiol 7:482–487PubMedCrossRefGoogle Scholar
  81. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015PubMedGoogle Scholar
  82. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99:7687–7692PubMedCrossRefGoogle Scholar
  83. Etienne J, Poitevin-Later F, Renaud F, Fleurette J (1990) Plasmid profiles and genomic DNA restriction endonuclease patterns of 30 independent Staphylococcus lugdunensis strains. FEMS Microbiol Lett 55:93–97PubMedCrossRefGoogle Scholar
  84. Euzéby JP (2009) LPSN (List of Prokaryotic Names with Standing in Nomenclature). Accessed 1 Jan 2009
  85. Falkinham JO 3rd (1994) Nucleic acid probes. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. ASM, Washington, DC, pp 701–710Google Scholar
  86. Feil EJ, Enright MC (2004) Analyses of clonality and the evolution of bacterial pathogens. Curr Opin Microbiol 7:308–313PubMedCrossRefGoogle Scholar
  87. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530PubMedCrossRefGoogle Scholar
  88. Feng Y, Chen CJ, Su LH, Hu S, Yu J, Chiu CH (2008) Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev 32:23–37PubMedCrossRefGoogle Scholar
  89. Fitzgerald JR, Sturdevant DE, Mackie SM, Gill SR, Musser JM (2001) Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc Natl Acad Sci USA 98:8821–8826PubMedCrossRefGoogle Scholar
  90. Foster G, Ross HM, Hutson RA, Collins MD (1997) Staphylococcus lutrae sp. nov., a new coagulase-positive species isolated from otters. Int J Syst Bacteriol 47:724–726PubMedCrossRefGoogle Scholar
  91. Freer JH, Birkbeck TH (1982) Possible conformation of delta-lysin, a membrane-damaging peptide of Staphylococcus aureus. J Theor Biol 94:535–540PubMedCrossRefGoogle Scholar
  92. Freer JH, Arbuthnott JP (1982) Toxins of Staphylococcus aureus. Pharmacol Ther 19:55–106PubMedCrossRefGoogle Scholar
  93. Frenay HM, Bunschoten AE, Schouls LM, van Leeuwen WJ, Vandenbroucke-Grauls CM, Verhoef J, Mooi FR (1996) Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism. Eur J Clin Microbiol Infect Dis 15:60–64PubMedCrossRefGoogle Scholar
  94. Frenay HM, Theelen JP, Schouls LM, Vandenbroucke-Grauls CM, Verhoef J, van Leeuwen WJ, Mooi FR (1994) Discrimination of epid2mic and nonepidemic methicillin-resistant Staphylococcus aureus strains on the basis of protein A gene polymorphism. J Clin Microbiol 32:846–847PubMedGoogle Scholar
  95. Freney J, Brun Y, Bes M, Meugnier H, Grimont F, Grimont PAD, Nervi C, Fleurette J (1988) Staphylococcus lugdunensis sp. nov. and Staphylococcus schleiferi sp. nov., 2 species from human clinical specimens. Int J Syst Bacteriol 38:168–172CrossRefGoogle Scholar
  96. Freney J, Kloos WE, Hájek V, Webster JA, Bes M, Brun Y, Vernozy-Rozand C (1999) Recommended minimal standards for description of new staphylococcal species. Subcommittee on the taxonomy of staphylococci and streptococci of the International Committee on Systematic Bacteriology. Int J Syst Bacteriol 49:489–502PubMedCrossRefGoogle Scholar
  97. Fueyo JM, Mendoza MC, Alvarez MA, Martin MC (2005) Relationships between toxin gene content and genetic background in nasal carried isolates of Staphylococcus aureus from Asturias, Spain. FEMS Microbiol Lett 243:447–454PubMedCrossRefGoogle Scholar
  98. Garrity GM, Lilburn TG, Cole JR, Harrison SH, Euzéby JP, Tindall BJ (2007) The bacteria: Phylum Firmicutes: Class “Bacilli”. In: TOBA (The Taxonomic Outline of Bacteria and Archaea), Release 7.7, part 9, pp 333–398.
  99. Ghebremedhin B, Layer F, Konig W, Konig B (2008) Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 46:1019–1025PubMedCrossRefGoogle Scholar
  100. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438PubMedCrossRefGoogle Scholar
  101. Gillaspy AF, Worrell V, Orvis J, Roe BA, Dyer DW, Iandolo JJ (2006) The Staphylococcus aureus NCTC 8325 genome. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (eds) Gram-positive pathogens, 2nd edn. ASM, Washington, DC, pp 381–412Google Scholar
  102. Gillet Y, Issartel B, Vanhems P, Fournet JC, Lina G, Bes M, Vandenesch F, Piemont Y, Brousse N, Floret D, Etienne J (2002) Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359:753–759PubMedCrossRefGoogle Scholar
  103. Gillet Y, Vanhems P, Lina G, Bes M, Vandenesch F, Floret D, Etienne J (2007) Factors predicting mortality in necrotizing community-acquired pneumonia caused by Staphylococcus aureus containing Panton-Valentine leukocidin. Clin Infect Dis 45:315–321PubMedCrossRefGoogle Scholar
  104. Goerke C, Koller J, Wolz C (2006a) Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob Agents Chemother 50:171–177PubMedCrossRefGoogle Scholar
  105. Goerke C, Wirtz C, Fluckiger U, Wolz C (2006b) Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol Microbiol 61:1673–1685PubMedCrossRefGoogle Scholar
  106. Goerke C, Pantůček R, Holtfreter S, Schulte BDG, Bröker B, Doškař J, Wolz C (2009) Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol 191:3462–3468PubMedCrossRefGoogle Scholar
  107. Goh SH, Byrne SK, Zhang JL, Chow AW (1992) Molecular typing of Staphylococcus aureus on the basis of coagulase gene polymorphisms. J Clin Microbiol 30:1642–1645PubMedGoogle Scholar
  108. Goh SH, Potter S, Wood JO, Hemmingsen SM, Reynolds RP, Chow AW (1996) HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol 34:818–823PubMedGoogle Scholar
  109. Gorski A, Borysowski J, Miedzybrodzki R, Weber-Dabrowska B (2007) Bacteriophages in medicine. In: Mc Grath S, van Sinderen D (eds) Bacteriophage genetics and molecular biology. Caister Academic Press, Norfolk, UK, pp 125–158Google Scholar
  110. Grundmann HJ, Towner KJ, Dijkshoorn L, Gerner-Smidt P, Maher M, Seifert H, Vaneechoutte M (1997) Multicenter study using standardized protocols and reagents for evaluation of reproducibility of PCR-based fingerprinting of Acinetobacter spp. J Clin Microbiol 35:3071–3077PubMedGoogle Scholar
  111. Gurtler V, Barrie HD (1995) Typing of Staphylococcus aureus strains by PCR-amplification of variable-length 16S-23S rDNA spacer regions: characterization of spacer sequences. Microbiology 141:1255–1265PubMedCrossRefGoogle Scholar
  112. Gurtler V, Barrie HD, Mayall BC (2001) Use of denaturing gradient gel electrophoresis to detect mutation in VS2 of the 16S-23S rDNA spacer amplified from Staphylococcus aureus isolates. Electrophoresis 22:1920–1924PubMedCrossRefGoogle Scholar
  113. Gurtler V, Mayall BC (2001) Genetic transfer and genome evolution in MRSA. Microbiology 147:3195–3197PubMedGoogle Scholar
  114. Gurtler V, Barrie HD, Mayall BC (2002) Denaturing gradient gel electrophoretic multilocus sequence typing of Staphylococcus aureus isolates. Electrophoresis 23:3310–3320PubMedCrossRefGoogle Scholar
  115. Hájek V (1976) Staphylococcus intermedius, a new species isolated from animals. Int J Syst Bacteriol 26:401–408CrossRefGoogle Scholar
  116. Hájek V, Devriese LA, Mordarski M, Goodfellow M, Pulverer G, Varaldo PE (1986) Elevation of Staphylococcus hyicus subsp. chromogenes (Devriese et al., 1978) to species status – Staphylococcus chromogenes (Devriese et al., 1978) comb. nov. Syst Appl Microbiol 8:169–173CrossRefGoogle Scholar
  117. Hájek V, Ludwig W, Schleifer KH, Springer N, Zitzelsberger W, Kroppenstedt RM, Kocur M (1992) Staphylococcus muscae, a new species isolated from flies. Int J Syst Bacteriol 42:97–101PubMedCrossRefGoogle Scholar
  118. Hájek V, Meugnier H, Bes M, Brun Y, Fiedler F, Chmela Z, Lasne Y, Fleurette J, Freney J (1996) Staphylococcus saprophyticus subsp. bovis subsp. nov., isolated from bovine nostrils. Int J Syst Bacteriol 46:792–796PubMedCrossRefGoogle Scholar
  119. Hall LM, Jordens JZ, Wang F (1989) Methicillin-resistant Staphylococcus aureus from China characterized by digestion of total DNA with restriction enzymes. Epidemiol Infect 103:183–192PubMedCrossRefGoogle Scholar
  120. Hallin M, Deplano A, Denis O, De Mendonca R, De Ryck R, Struelens MJ (2007) Validation of pulsed-field gel electrophoresis and spa typing for long-term, nationwide epidemiological surveillance studies of Staphylococcus aureus infections. J Clin Microbiol 45:127–133PubMedCrossRefGoogle Scholar
  121. Hamels S, Gala JL, Dufour S, Vannuffel P, Zammatteo N, Remacle J (2001) Consensus PCR and microarray for diagnosis of the genus Staphylococcus, species, and methicillin resistance. Biotechniques 31:1364–1366, 1368, 1370–1362Google Scholar
  122. Hanssen AM, Kjeldsen G, Sollid JU (2004) Local variants of staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: evidence of horizontal gene transfer? Antimicrob Agents Chemother 48:285–296PubMedCrossRefGoogle Scholar
  123. Hanssen AM, Sollid JUE (2006) SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 46:8–20PubMedCrossRefGoogle Scholar
  124. Harmsen D, Claus H, Witte W, Rothganger J, Turnwald D, Vogel U (2003) Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442–5448PubMedCrossRefGoogle Scholar
  125. Hauschild T, Stepanovic S (2008) Identification of Staphylococcus spp. by PCR-restriction fragment length polymorphism analysis of dnaJ gene. J Clin Microbiol 46:3875–3879PubMedCrossRefGoogle Scholar
  126. Herron-Olson L, Fitzgerald JR, Musser JM, Kapur V (2007) Molecular correlates of host specialization in Staphylococcus aureus. PLoS ONE 2:e1120PubMedCrossRefGoogle Scholar
  127. Hesselbarth J, Schwarz S (1995) Comparative ribotyping of Staphylococcus intermedius from dogs, pigeons, horses and mink. Vet Microbiol 45:11–17PubMedCrossRefGoogle Scholar
  128. Heusser R, Ender M, Berger-Bachi B, McCallum N (2007) Mosaic staphylococcal cassette chromosome mec containing two recombinase loci and a new mec complex, B2. Antimicrob Agents Chemother 51:390–393PubMedCrossRefGoogle Scholar
  129. Highlander SK, Hulten KG, Qin X, Jiang H, Yerrapragada S, Mason EO Jr, Shang Y, Williams TM, Fortunov RM, Liu Y, Igboeli O, Petrosino J, Tirumalai M, Uzman A, Fox GE, Cardenas AM, Muzny DM, Hemphill L, Ding Y, Dugan S, Blyth PR, Buhay CJ, Dinh HH, Hawes AC, Holder M, Kovar CL, Lee SL, Liu W, Nazareth LV, Wang Q, Zhou J, Kaplan SL, Weinstock GM (2007) Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus. BMC Microbiol 7:99PubMedCrossRefGoogle Scholar
  130. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J (2004) Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101:9786–9791PubMedCrossRefGoogle Scholar
  131. Hrstka R, Růžičková V, Petráš P, Pantůček R, Rosypal S, Doškař J (2006) Genotypic characterization of toxic shock syndrome toxin-1-producing strains of Staphylococcus aureus isolated in the Czech Republic. Int J Med Microbiol 296:49–54PubMedCrossRefGoogle Scholar
  132. Iacumin L, Comi G, Cantoni C, Cocolin L (2006) Ecology and dynamics of coagulase-negative cocci isolated from naturally fermented Italian sausages. Syst Appl Microbiol 29:480–486PubMedCrossRefGoogle Scholar
  133. Igarashi H, Fujikawa H, Shingaki M, Bergdoll MS (1986) Latex agglutination test for staphylococcal toxic shock syndrome toxin 1. J Clin Microbiol 23:509–512PubMedGoogle Scholar
  134. Igimi S, Kawamura S, Takahashi E, Mitsuoka T (1989) Staphylococcus felis, a new species from clinical specimens from cats. Int J Syst Bacteriol 39:373–377CrossRefGoogle Scholar
  135. Igimi S, Takahashi E, Mitsuoka T (1990) Staphylococcus schleiferi subsp. coagulans subsp. nov., isolated from the external auditory meatus of dogs with external ear otitis. Int J Syst Bacteriol 40:409–411PubMedCrossRefGoogle Scholar
  136. Ito T (2009) SCCmec. Accessed 1 March 2009
  137. Iwantscheff A, Kuhnen E, Brandis H (1985) Species distribution of coagulase-negative staphylococci isolated from clinical sources. Zentralbl Bakteriol Mikrobiol Hyg [A] 260:41–50Google Scholar
  138. Jansen WT, Beitsma MM, Koeman CJ, van Wamel WJ, Verhoef J, Fluit AC (2006) Novel mobile variants of staphylococcal cassette chromosome mec in Staphylococcus aureus. Antimicrob Agents Chemother 50:2072–2078PubMedCrossRefGoogle Scholar
  139. Jarraud S, Cozon G, Vandenesch F, Bes M, Etienne J, Lina G (1999) Involvement of enterotoxins G and I in staphylococcal toxic shock syndrome and staphylococcal scarlet fever. J Clin Microbiol 37:2446–2449PubMedGoogle Scholar
  140. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Etienne J, Vandenesch F, Bonneville M, Lina G (2001) egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166:669–677PubMedGoogle Scholar
  141. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 70:631–641PubMedCrossRefGoogle Scholar
  142. Jensen MA, Webster JA, Straus N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952PubMedGoogle Scholar
  143. Johnson WM, Tyler SD, Ewan EP, Ashton FE, Pollard DR, Rozee KR (1991) Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J Clin Microbiol 29:426–430PubMedGoogle Scholar
  144. Jones CL, Khan SA (1986) Nucleotide sequence of the enterotoxin B gene from Staphylococcus aureus. J Bacteriol 166:29–33PubMedGoogle Scholar
  145. Jørgensen HJ, Mork T, Caugant DA, Kearns A, Rorvik LM (2005) Genetic variation among Staphylococcus aureus strains from Norwegian bulk milk. Appl Environ Microbiol 71:8352–8361PubMedCrossRefGoogle Scholar
  146. Kahl BC, Mellmann A, Deiwick S, Peters G, Harmsen D (2005) Variation of the polymorphic region X of the protein A gene during persistent airway infection of cystic fibrosis patients reflects two independent mechanisms of genetic change in Staphylococcus aureus. J Clin Microbiol 43:502–505PubMedCrossRefGoogle Scholar
  147. Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y (1998) Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. Gene 215:57–67PubMedCrossRefGoogle Scholar
  148. Kaneko J, Kamio Y (2004) Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem 68:981–1003PubMedCrossRefGoogle Scholar
  149. Kempf VA, Trebesius K, Autenrieth IB (2000) Fluorescent In situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38:830–838PubMedGoogle Scholar
  150. Kennedy AD, Otto M, Braughton KR, Whitney AR, Chen L, Mathema B, Mediavilla JR, Byrne KA, Parkins LD, Tenover FC, Kreiswirth BN, Musser JM, DeLeo FR (2008) Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci U S A 105:1327–1332PubMedCrossRefGoogle Scholar
  151. Kilpper-Bälz R, Schleifer KH (1981) Transfer of Peptococcus saccharolyticus Foubert and Douglas to the genus Staphylococcus – Staphylococcus saccharolyticus (Foubert and Douglas) comb. nov. Zentralbl Bakteriol Mikrobiol Hyg [C] 2:324–331Google Scholar
  152. Klaassen CH, de Valk HA, Horrevorts AM (2003) Clinical Staphylococcus aureus isolate negative for the Sa442 fragment. J Clin Microbiol 41:4493PubMedCrossRefGoogle Scholar
  153. Kloos WE, Schleifer KH (1975) Isolation and characterization of staphylococci from human skin. 2. Descriptions of 4 new species – Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Bacteriol 25:62–79CrossRefGoogle Scholar
  154. Kloos WE, Schleifer KH, Smith RF (1976) Characterization of Staphylococcus sciuri sp. nov. and its subspecies. Int J Syst Bacteriol 26:22–37CrossRefGoogle Scholar
  155. Kloos WE, Schleifer KH (1983) Staphylococcus auricularis sp. nov. – an inhabitant of the human external ear. Int J Syst Bacteriol 33:9–14CrossRefGoogle Scholar
  156. Kloos WE, Wolfshohl JF (1991) Staphylococcus cohnii subspecies: Staphylococcus cohnii subsp. cohnii subsp. nov. and Staphylococcus cohnii subsp. urealyticum subsp. nov. Int J Syst Bacteriol 41:284–289PubMedCrossRefGoogle Scholar
  157. Kloos WE, Ballard DN, Webster JA, Hubner RJ, Tomasz A, Couto I, Sloan GL, Dehart HP, Fiedler F, Schubert K, de Lencastre H, Sanches IS, Heath HE, Leblanc PA, Ljungh A (1997) Ribotype delineation and description of Staphylococcus sciuri subspecies and their potential as reservoirs of methicillin resistance and staphylolytic enzyme genes. Int J Syst Bacteriol 47:313–323PubMedCrossRefGoogle Scholar
  158. Kloos WE, Ballard DN, George CG, Webster JA, Hubner RJ, Ludwig W, Schleifer KH, Fiedler F, Schubert K (1998a) Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipercicus sp. nov., and Macrococcus bovicus sp. nov. and Macrococcus carouselicus sp. nov. Int J Syst Bacteriol 48:859–877PubMedCrossRefGoogle Scholar
  159. Kloos WE, George CG, Olgiate JS, Van Pelt L, McKinnon ML, Zimmer BL, Muller E, Weinstein MP, Mirrett S (1998b) Staphylococcus hominis subsp. novobiosepticus subsp. nov., a novel trehalose- and N-acetyl-D-glucosamine-negative, novobiocin- and multiple-antibiotic-resistant subspecies isolated from human blood cultures. Int J Syst Bacteriol 48:799–812PubMedCrossRefGoogle Scholar
  160. Kloos WE, Bannerman TL (1999) Staphylococcus and Micrococcus. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds) Manual of clinical microbiology, 7th edn. ASM Press, Washington, DC, pp 264–282Google Scholar
  161. Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J, Hiramatsu K (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51:264–274PubMedCrossRefGoogle Scholar
  162. Kontos F, Petinaki E, Spiliopoulou I, Maniati M, Maniatis AN (2003) Evaluation of a novel method based on PCR restriction fragment length polymorphism analysis of the tuf gene for the identification of Staphylococcus species. J Microbiol Methods 55:465–469PubMedCrossRefGoogle Scholar
  163. Koreen L, Ramaswamy SV, Graviss EA, Naidich S, Musser JM, Kreiswirth BN (2004) spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792–799PubMedCrossRefGoogle Scholar
  164. Kreiswirth BN (1989) Genetics and expression of toxic shock syndrome toxin 1: overview. Rev Infect Dis 11(Suppl 1):S97–S100PubMedCrossRefGoogle Scholar
  165. Kreiswirth B, Kornblum J, Arbeit RD, Eisner W, Maslow JN, McGeer A, Low DE, Novick RP (1993) Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science 259:227–230PubMedCrossRefGoogle Scholar
  166. Kumari DN, Keer V, Hawkey PM, Parnell P, Joseph N, Richardson JF, Cookson B (1997) Comparison and application of ribosome spacer DNA amplicon polymorphisms and pulsed-field gel electrophoresis for differentiation of methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol 35:881–885PubMedGoogle Scholar
  167. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240PubMedCrossRefGoogle Scholar
  168. Kuroda M, Yamashita A, Hirakawa H, Kumano M, Morikawa K, Higashide M, Maruyama A, Inose Y, Matoba K, Toh H, Kuhara S, Hattori M, Ohta T (2005) Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci U S A 102:13272–13277PubMedCrossRefGoogle Scholar
  169. Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2005) The complete genomes and ­proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A 102:5174–5179PubMedCrossRefGoogle Scholar
  170. Kwok AY, Chow AW (2003) Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences. Int J Syst Evol Microbiol 53:87–92PubMedCrossRefGoogle Scholar
  171. Ladhani S, Joannou CL, Lochrie DP, Evans RW, Poston SM (1999) Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin Microbiol Rev 12:224–242PubMedGoogle Scholar
  172. Ladhani S (2003) Understanding the mechanism of action of the exfoliative toxins of Staphylococcus aureus. FEMS Immunol Med Microbiol 39:181–189PubMedCrossRefGoogle Scholar
  173. Lambert LH, Cox T, Mitchell K, Rossello-Mora RA, Del Cueto C, Dodge DE, Orkand P, Cano RJ (1998) Staphylococcus succinus sp. nov., isolated from Dominican amber. Int J Syst Bacteriol 48:511–518PubMedCrossRefGoogle Scholar
  174. Layer F, Ghebremedhin B, Konig W, Konig B (2007) Differentiation of Staphylococcus spp. by terminal-restriction fragment length polymorphism analysis of glyceraldehyde-3-phosphate dehydrogenase-encoding gene. J Microbiol Methods 70:542–549PubMedCrossRefGoogle Scholar
  175. Le Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2:63–76PubMedGoogle Scholar
  176. Letertre C, Perelle S, Dilasser F, Fach P (2003) Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus. J Appl Microbiol 95:38–43PubMedCrossRefGoogle Scholar
  177. Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J (1999) Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132PubMedCrossRefGoogle Scholar
  178. Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP (1998) The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29:527–543PubMedCrossRefGoogle Scholar
  179. Lindsay JA, Holden MT (2006) Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6:186–201PubMedCrossRefGoogle Scholar
  180. Lindsay JA, Moore CE, Day NP, Peacock SJ, Witney AA, Stabler RA, Husain SE, Butcher PD, Hinds J (2006) Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188:669–676PubMedCrossRefGoogle Scholar
  181. Lindsay JA (ed) (2008) Staphylococcus Molecular Genetics. Caister Academic Press, Norfolk, UK, pp 1–278Google Scholar
  182. Løvseth A, Loncarevic S, Berdal KG (2004) Modified multiplex PCR method for detection of pyrogenic exotoxin genes in staphylococcal isolates. J Clin Microbiol 42:3869–3872PubMedCrossRefGoogle Scholar
  183. Luong TT, Ouyang S, Bush K, Lee CY (2002) Type 1 capsule genes of Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic element. J Bacteriol 184:3623–3629PubMedCrossRefGoogle Scholar
  184. Mackenzie A, Johnson W, Heyes B, Norrish B, Jamieson F (1995) A prolonged outbreak of exfoliative toxin A-producing Staphylococcus aureus in a newborn nursery. Diagn Microbiol Infect Dis 21:69–75PubMedCrossRefGoogle Scholar
  185. Maes N, De Gheldre Y, De Ryck R, Vaneechoutte M, Meugnier H, Etienne J, Struelens MJ (1997) Rapid and accurate identification of Staphylococcus species by tRNA intergenic spacer length polymorphism analysis. J Clin Microbiol 35:2477–2481PubMedGoogle Scholar
  186. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145PubMedCrossRefGoogle Scholar
  187. Malíková L, Sedláček I, Nováková D, Němec M (2007) Ribotyping and biotyping of Staphylococcus epidermidis isolated from hospital environment. Folia Microbiol 52:375–380CrossRefGoogle Scholar
  188. Mannerová S, Pantůček R, Doškař J, Švec P, Snauwaert C, Vancanneyt M, Swings J, Sedláček I (2003) Macrococcus brunensis sp. nov., Macrococcus hajekii sp. nov. and Macrococcus lamae sp. nov., from the skin of llamas. Int J Syst Evol Microbiol 53:1647–1654PubMedCrossRefGoogle Scholar
  189. Marsou R, Bes M, Boudouma M, Brun Y, Meugnier H, Freney J, Vandenesch F, Etienne J (1999) Distribution of Staphylococcus sciuri subspecies among human clinical specimens, and profile of antibiotic resistance. Res Microbiol 150:531–541PubMedCrossRefGoogle Scholar
  190. Martineau F, Picard FJ, Roy PH, Ouellette M, Bergeron MG (1998) Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J Clin Microbiol 36:618–623PubMedGoogle Scholar
  191. Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, Bergeron MG (2001) Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol 39:2541–2547PubMedCrossRefGoogle Scholar
  192. Maslow J, Mulligan ME (1996) Epidemiologic typing systems. Infect Control Hosp Epidemiol 17:595–604PubMedCrossRefGoogle Scholar
  193. Maslow JN, Mulligan ME, Arbeit RD (1993) Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis 17:153–162PubMedCrossRefGoogle Scholar
  194. Mason WJ, Blevins JS, Beenken K, Wibowo N, Ojha N, Smeltzer MS (2001) Multiplex PCR protocol for the diagnosis of staphylococcal infection. J Clin Microbiol 39:3332–3338PubMedCrossRefGoogle Scholar
  195. Mazmanian SK, Ton-That H, Schneewind O (2001) Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 40:1049–1057PubMedCrossRefGoogle Scholar
  196. Mazurek GH, Reddy V, Marston BJ, Haas WH, Crawford JT (1996) DNA fingerprinting by infrequent-restriction-site amplification. J Clin Microbiol 34:2386–2390PubMedGoogle Scholar
  197. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41:5113–5120PubMedCrossRefGoogle Scholar
  198. Mehrotra M, Wang G, Johnson WM (2000) Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol 38:1032–1035PubMedGoogle Scholar
  199. Melles DC, van Leeuwen WB, Snijders SV, Horst-Kreft D, Peeters JK, Verbrugh HA, van Belkum A (2007) Comparison of multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and amplified fragment length polymorphism (AFLP) for genetic typing of Staphylococcus aureus. J Microbiol Methods 69:371–375PubMedCrossRefGoogle Scholar
  200. Melles DC, Tenover FC, Kuehnert MJ, Witsenboer H, Peeters JK, Verbrugh HA, van Belkum A (2008) Overlapping population structures of nasal isolates of Staphylococcus aureus from healthy Dutch and American individuals. J Clin Microbiol 46:235–241PubMedCrossRefGoogle Scholar
  201. Melles DC, Schouls L, Francois P, Herzig S, Verbrugh HA, van Belkum A, Schrenzel J (2009) High-throughput typing of Staphylococcus aureus by amplified fragment length polymorphism (AFLP) or multi-locus variable number of tandem repeat analysis (MLVA) reveals consistent strain relatedness. Eur J Clin Microbiol Infect Dis 28:39–45PubMedCrossRefGoogle Scholar
  202. Mellmann A, Becker K, von Eiff C, Keckevoet U, Schumann P, Harmsen D (2006) Sequencing and staphylococci identification. Emerg Infect Dis 12:333–336PubMedCrossRefGoogle Scholar
  203. Mellmann A, Weniger T, Berssenbrugge C, Rothganger J, Sammeth M, Stoye J, Harmsen D (2007) Based Upon Repeat Pattern (BURP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on spa polymorphisms. BMC Microbiol 7:98PubMedCrossRefGoogle Scholar
  204. Melter O, Santos Sanches I, Schindler J, Aires de Sousa M, Mato R, Kovarova V, Zemlickova H, de Lencastre H (1999) Methicillin-resistant Staphylococcus aureus clonal types in the Czech Republic. J Clin Microbiol 37:2798–2803PubMedGoogle Scholar
  205. Melter O, Aires de Sousa M, Urbaskova P, Jakubu V, Zemlickova H, de Lencastre H (2003) Update on the major clonal types of methicillin-resistant Staphylococcus aureus in the Czech Republic. J Clin Microbiol 41:4998–5005PubMedCrossRefGoogle Scholar
  206. Mendoza M, Meugnier H, Bes M, Etienne J, Freney J (1998) Identification of Staphylococcus species by 16S-23S rDNA intergenic spacer PCR analysis. Int J Syst Bacteriol 48:1049–1055PubMedCrossRefGoogle Scholar
  207. Milheirico C, Oliveira DC, de Lencastre H (2007a) Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: ‘SCCmec IV multiplex’. J Antimicrob Chemother 60:42–48PubMedCrossRefGoogle Scholar
  208. Milheirico C, Oliveira DC, de Lencastre H (2007b) Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother 51:3374–3377PubMedCrossRefGoogle Scholar
  209. Monday SR, Bohach GA (1999) Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J Clin Microbiol 37:3411–3414PubMedGoogle Scholar
  210. Monecke S, Slickers P, Ehricht R (2008) Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol Med Microbiol 53:237–251PubMedCrossRefGoogle Scholar
  211. Mongkolrattanothai K, Boyle S, Kahana MD, Daum RS (2003) Severe Staphylococcus aureus infections caused by clonally related community-acquired methicillin-susceptible and methicillin-resistant isolates. Clin Infect Dis 37:1050–1058PubMedCrossRefGoogle Scholar
  212. Moser SA, Box MJ, Patel M, Amaya M, Schelonka R, Waites KB (2009) Multiple-locus variable-number tandem-repeat analysis of meticillin-resistant Staphylococcus aureus discriminates within USA pulsed-field gel electrophoresis types. J Hosp Infect 71:333–339PubMedCrossRefGoogle Scholar
  213. Murchan S, Kaufmann ME, Deplano A, de Ryck R, Struelens M, Zinn CE, Fussing V, Salmenlinna S, Vuopio-Varkila J, El Solh N, Cuny C, Witte W, Tassios PT, Legakis N, van Leeuwen W, van Belkum A, Vindel A, Laconcha I, Garaizar J, Haeggman S, Olsson-Liljequist B, Ransjo U, Coombes G, Cookson B (2003) Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus: a single approach developed by consensus in 10 European laboratories and its application for tracing the spread of related strains. J Clin Microbiol 41:1574–1585PubMedCrossRefGoogle Scholar
  214. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, Bruce D, Rubin E, Myers E, Siggia ED, Tomasz A (2007) Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 104:9451–9456PubMedCrossRefGoogle Scholar
  215. Neoh HM, Cui L, Yuzawa H, Takeuchi F, Matsuo M, Hiramatsu K (2008) Mutated response regulator graR is responsible for phenotypic conversion of Staphylococcus aureus from heterogeneous vancomycin-intermediate resistance to vancomycin-intermediate resistance. Antimicrob Agents Chemother 52:45–53PubMedCrossRefGoogle Scholar
  216. Nováková D, Pantůček R, Petráš P, Koukalová D, Sedláček I (2006a) Occurance of Staphylococcus nepalensis strains in different sources including human clinical material. FEMS Microbiol Lett 263:163–168PubMedCrossRefGoogle Scholar
  217. Nováková D, Sedláček I, Pantůček R, Štětina V, Švec P, Petráš P (2006b) Staphylococcus equorum and Staphylococcus succinus isolated from human clinical specimens. J Med Microbiol 55:523–528PubMedCrossRefGoogle Scholar
  218. Nováková D, Švec P (2008) Application of the (GTG)5-PCR fingerprinting for rapid identification of staphylococcal species occuring in humans. Clin Microbiol Infect 14(Suppl 7):S249Google Scholar
  219. Nováková D, Pantůček R, Hubálek Z, Falsen E, Büsse H-J, Schumann P, Sedláček I (2010) Staphylococcus microti sp. nov. isolated from the Microtus arvalis. Int J Syst Evol Microbiol 60:566–573PubMedCrossRefGoogle Scholar
  220. Novick RP (1987) Plasmid incompatibility. Microbiol Rev 51:381–395PubMedGoogle Scholar
  221. Novick RP (1990) Molecular Biology of the Staphylococci. VCH Publishers, New YorkGoogle Scholar
  222. Novick RP (2003) Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49:93–105PubMedCrossRefGoogle Scholar
  223. Oliveira DC, Santos-Sanches I, Mato R, Tamayo M, Ribeiro G, Costa D, de Lencastre H (1998) Virtually all methicillin-resistant Staphylococcus aureus (MRSA) infections in the largest Portuguese teaching hospital are caused by two internationally spread multiresistant strains: the ‘Iberian’ and the ‘Brazilian’ clones of MRSA. Clin Microbiol Infect 4:373–384PubMedCrossRefGoogle Scholar
  224. Oliveira DC, Crisostomo I, Santos-Sanches I, Major P, Alves CR, Aires-de-Sousa M, Thege MK, de Lencastre H (2001) Comparison of DNA sequencing of the protein A gene polymorphic region with other molecular typing techniques for typing two epidemiologically diverse collections of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 39:574–580PubMedCrossRefGoogle Scholar
  225. Oliveira DC, Milheirico C, Vinga S, de Lencastre H (2006a) Assessment of allelic variation in the ccrAB locus in methicillin-resistant Staphylococcus aureus clones. J Antimicrob Chemother 58:23–30PubMedCrossRefGoogle Scholar
  226. Oliveira DC, Milheirico C, de Lencastre H (2006b) Redefining a structural variant of staphylococcal cassette chromosome mec, SCCmec type VI. Antimicrob Agents Chemother 50:3457–3459PubMedCrossRefGoogle Scholar
  227. Oliveira K, Brecher SM, Durbin A, Shapiro DS, Schwartz DR, De Girolami PC, Dakos J, Procop GW, Wilson D, Hanna CS, Haase G, Peltroche-Llacsahuanga H, Chapin KC, Musgnug MC, Levi MH, Shoemaker C, Stender H (2003) Direct identification of Staphylococcus aureus from positive blood culture bottles. J Clin Microbiol 41:889–891PubMedCrossRefGoogle Scholar
  228. Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K (2003) Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect Immun 71:6088–6094PubMedCrossRefGoogle Scholar
  229. Palazzo IC, d’Azevedo PA, Secchi C, Pignatari AC, Darini AL (2008) Staphylococcus hominis subsp. novobiosepticus strains causing nosocomial bloodstream infection in Brazil. J Antimicrob Chemother 62:1222–1226PubMedCrossRefGoogle Scholar
  230. Palka-Santini M, Putzfeld S, Cleven BE, Kronke M, Krut O (2007) Rapid identification, virulence analysis and resistance profiling of Staphylococcus aureus by gene segment-based DNA microarrays: application to blood culture post-processing. J Microbiol Methods 68:468–477PubMedCrossRefGoogle Scholar
  231. Palomares C, Torres MJ, Torres A, Aznar J, Palomares JC (2003) Rapid detection and identification of Staphylococcus aureus from blood culture specimens using real-time fluorescence PCR. Diagn Microbiol Infect Dis 45:183–189PubMedCrossRefGoogle Scholar
  232. Palys T, Nakamura LK, Cohan FM (1997) Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol 47:1145–1156PubMedCrossRefGoogle Scholar
  233. Pantůček R, Götz F, Doškař J, Rosypal S (1996) Genomic variability of Staphylococcus aureus and the other coagulase-positive Staphylococcus species estimated by macrorestriction analysis using pulsed-field gel electrophoresis. Int J Syst Bacteriol 46:216–222PubMedCrossRefGoogle Scholar
  234. Pantůček R, Sedláček I, Doškař J, Rosypal S (1999) Complex genomic and phenotypic characterization of the related species Staphylococcus carnosus and Staphylococcus piscifermentans. Int J Syst Bacteriol 49:941–951PubMedCrossRefGoogle Scholar
  235. Pantůček R, Doškař J, Růžičková V, Kašpárek P, Oráčová E, Kvardová V, Rosypal S (2004) Identification of bacteriophage types and their carriage in Staphylococcus aureus. Arch Virol 149:1689–1703PubMedCrossRefGoogle Scholar
  236. Pantůček R, Sedláček I, Petráš P, Koukalová D, Švec P, Štetina V, Vancanneyt M, Chrastinová L, Vokurková J, Růžičková V, Doškař J, Swings J, Hájek V (2005) Staphylococcus simiae sp. nov., isolated from South American squirrel monkeys. Int J Syst Evol Microbiol 55:1953–1958PubMedCrossRefGoogle Scholar
  237. Park CE, Szabo R (1986) Evaluation of the reversed passive latex agglutination (RPLA) test kits for detection of staphylococcal enterotoxins A, B, C, and D in foods. Can J Microbiol 32:723–727PubMedCrossRefGoogle Scholar
  238. Peng HL, Novick RP, Kreiswirth B, Kornblum J, Schlievert P (1988) Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol 170:4365–4372PubMedGoogle Scholar
  239. Pfaller MA, Hollis RJ (2004) Automated ribotyping. In: Pershing DH, Tenover FC, Versalovic J, Tang YW, Unger ER, Relman DA, White TJ (eds) Molecular microbiology: Diagnostic principles and practice. ASM Press, Washington, DC, pp 245–258Google Scholar
  240. Place RB, Hiestand D, Burri S, Teuber M (2002) Staphylococcus succinus subsp. casei subsp. nov., a dominant isolate from a surface ripened cheese. Syst Appl Microbiol 25:353–359PubMedCrossRefGoogle Scholar
  241. Place RB, Hiestand D, Gallmann HR, Teuber M (2003) Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheeses. Syst Appl Microbiol 26:30–37PubMedCrossRefGoogle Scholar
  242. Poyart C, Quesne G, Boumaila C, Trieu-Cuot P (2001) Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol 39:4296–4301PubMedCrossRefGoogle Scholar
  243. Prévost G, Jaulhac B, Piemont Y (1992) DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing among methicillin-resistant Staphylococcus aureus isolates. J Clin Microbiol 30:967–973PubMedGoogle Scholar
  244. Prévost G, Cribier B, Couppie P, Petiau P, Supersac G, Finck-Barbancon V, Monteil H, Piemont Y (1995) Panton-Valentine leucocidin and gamma-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect Immun 63:4121–4129PubMedGoogle Scholar
  245. Prévost G (2005) Toxins in Staphylococcus aureus pathogenesis. In: Proft T (ed) Microbial toxins, molecular and cellular biology, Horizon Bioscience. Norfolk, UK, pp 243–284Google Scholar
  246. Probst AJ, Hertel C, Richter L, Wassill L, Ludwig W, Hammes WP (1998) Staphylococcus condimenti sp. nov., from soy sauce mash, and Staphylococcus carnosus (Schleifer and Fischer 1982) subsp. utilis subsp. nov. Int J Syst Bacteriol 48:651–658PubMedCrossRefGoogle Scholar
  247. Projan SJ, Archer GL (1989) Mobilization of the relaxable Staphylococcus aureus plasmid pC221 by the conjugative plasmid pGO1 involves three pC221 loci. J Bacteriol 171:1841–1845PubMedGoogle Scholar
  248. Projan SJ, Kornblum J, Kreiswirth B, Moghazeh SL, Eisner W, Novick RP (1989) Nucleotide sequence: the beta-hemolysin gene of Staphylococcus aureus. Nucleic Acids Res 17:3305PubMedCrossRefGoogle Scholar
  249. Quelle LS, Corso A, Galas M, Sordelli DO (2003) STAR gene restriction profile analysis in epidemiological typing of methicillin-resistant Staphylococcus aureus: description of the new method and comparison with other polymerase chain reaction (PCR)-based methods. Diagn Microbiol Infect Dis 47:455–464PubMedCrossRefGoogle Scholar
  250. Rantsiou K, Iacumin L, Cantoni C, Comi G, Cocolin L (2005) Ecology and characterization by molecular methods of Staphylococcus species isolated from fresh sausages. Int J Food Microbiol 97:277–284PubMedCrossRefGoogle Scholar
  251. Richardson JF, Reith S (1993) Characterization of a strain of methicillin-resistant Staphylococcus aureus (EMRSA-15) by conventional and molecular methods. J Hosp Infect 25:45–52PubMedCrossRefGoogle Scholar
  252. Robinson DA, Enright MC (2003) Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:3926–3934PubMedCrossRefGoogle Scholar
  253. Robinson DA, Enright MC (2004a) Evolution of Staphylococcus aureus by large chromosomal replacements. J Bacteriol 186:1060–1064PubMedCrossRefGoogle Scholar
  254. Robinson DA, Enright MC (2004b) Multilocus sequence typing and the evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 10:92–97PubMedCrossRefGoogle Scholar
  255. Robinson DA, Monk AB, Cooper JE, Feil EJ, Enright MC (2005) Evolutionary genetics of the accessory gene regulator (agr) locus in Staphylococcus aureus. J Bacteriol 187:8312–8321PubMedCrossRefGoogle Scholar
  256. Rose SA, Bankes P, Stringer MF (1989) Detection of staphylococcal enterotoxins in dairy products by the reversed passive latex agglutination (SET-RPLA) kit. Int J Food Microbiol 8:65–72PubMedCrossRefGoogle Scholar
  257. Rosenbach EF (1884) Mikroorganismen bei den Wundinfektionskrankheiten des Menschen. Bergmann, WiesbadenGoogle Scholar
  258. Rosenstein R, Nerz C, Biswas L, Resch A, Raddatz G, Schuster SC, Gotz F (2009) Genome analysis of the meat starter culture bacterium Staphylococcus carnosus TM300. Appl Environ Microbiol 75:811–822PubMedCrossRefGoogle Scholar
  259. Ruppitsch W, Indra A, Stoger A, Mayer B, Stadlbauer S, Wewalka G, Allerberger F (2006) Classifying spa types in complexes improves interpretation of typing results for methicillin-resistant Staphylococcus aureus. J Clin Microbiol 44:2442–2448PubMedCrossRefGoogle Scholar
  260. Růžičková V, Pantůček R, Petráš P, Doškař J, Sedláček I, Rosypal S (2003) Molecular typing of exfoliative toxin-producing Staphylococcus aureus strains involved in epidermolytic infections. Int J Med Microbiol 292:541–545PubMedCrossRefGoogle Scholar
  261. Růžičková V, Voller J, Pantůček R, Petráš P, Doškař J (2005) Multiplex PCR for detection of three exfoliative toxin serotype genes in Staphylococcus aureus. Folia Microbiol 50:499–502CrossRefGoogle Scholar
  262. Růžičková V, Karpíšková R, Pantůček R, Pospíšilová M, Černíková P, Doškař J (2008) Genotype analysis of enterotoxin H-positive Staphylococcus aureus strains isolated from food samples in the Czech Republic. Int J Food Microbiol 121:60–65PubMedCrossRefGoogle Scholar
  263. Ruzin A, Lindsay J, Novick RP (2001) Molecular genetics of SaPI1 - a mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol 41:365–377PubMedCrossRefGoogle Scholar
  264. Sabat A, Krzyszton-Russjan J, Strzalka W, Filipek R, Kosowska K, Hryniewicz W, Travis J, Potempa J (2003) New method for typing Staphylococcus aureus strains: multiple-locus variable-number tandem repeat analysis of polymorphism and genetic relationships of clinical isolates. J Clin Microbiol 41:1801–1804PubMedCrossRefGoogle Scholar
  265. Sakwinska O, Kuhn G, Balmelli C, Francioli P, Giddey M, Perreten V, Riesen A, Zysset F, Blanc DS, Moreillon P (2009) Genetic diversity and ecological success of Staphylococcus aureus strains colonizing humans. Appl Environ Microbiol 75:175–183PubMedCrossRefGoogle Scholar
  266. Saruta K, Hoshina S, Machida K (1995) Genetic identification of Staphylococcus aureus by polymerase chain reaction using single-base-pair mismatch in 16S ribosomal RNA gene. Microbiol Immunol 39:839–844PubMedGoogle Scholar
  267. Saruta K, Matsunaga T, Kono M, Hoshina S, Ikawa S, Sakai O, Machida K (1997) Rapid identification and typing of Staphylococcus aureus by nested PCR amplified ribosomal DNA spacer region. FEMS Microbiol Lett 146:271–278PubMedCrossRefGoogle Scholar
  268. Sato H, Matsumori Y, Tanabe T, Saito H, Shimizu A, Kawano J (1994) A new type of staphylococcal exfoliative toxin from a Staphylococcus aureus strain isolated from a horse with phlegmon. Infect Immun 62:3780–3785PubMedGoogle Scholar
  269. Savelkoul PH, Melles DC, Buffing N, Gorkink R, Simons G, van Belkum A (2007) High density whole genome fingerprinting of methicillin-resistant and -susceptible strains of Staphylococcus aureus in search of phenotype-specific molecular determinants. J Microbiol Methods 71:44–54PubMedCrossRefGoogle Scholar
  270. Schleifer KH, Kloos WE (1975) Isolation and characterization of staphylococci from human skin.1. Amended descriptions of Staphylococcus epidermidis and Staphylococcus saprophyticus and descriptions of 3 new species – Staphylococcus cohnii, Staphylococcus haemolyticus, and Staphylococcus xylosus. Int J Syst Bacteriol 25:50–61CrossRefGoogle Scholar
  271. Schleifer KH, Fischer U (1982) Description of a new species of the genus StaphylococcusStaphylococcus carnosus. Int J Syst Bacteriol 32:153–156CrossRefGoogle Scholar
  272. Schleifer KH, Kilpper-Bälz R, Devriese LA (1984) Staphylococcus arlettae sp. nov., Staphylococcus equorum sp. nov. and Staphylococcus kloosii sp. nov. – 3 new coagulase-negative, novobiocin-resistant species from animals. Syst Appl Microbiol 5:501–509CrossRefGoogle Scholar
  273. Schmitz FJ, Mackenzie CR, Hofmann B, Verhoef J, Finken-Eigen M, Heinz HP, Kohrer K (1997) Specific information concerning taxonomy, pathogenicity and methicillin resistance of staphylococci obtained by a multiplex PCR. J Med Microbiol 46:773–778PubMedCrossRefGoogle Scholar
  274. Shafer WM, Iandolo JJ (1978) Chromosomal locus for staphylococcal enterotoxin B. Infect Immun 20:273–278PubMedGoogle Scholar
  275. Shah MM, Iihara H, Noda M, Song SX, Nhung PH, Ohkusu K, Kawamura Y, Ezaki T (2007) dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int J Syst Evol Microbiol 57:25–30PubMedCrossRefGoogle Scholar
  276. Shands KN, Schmid GP, Dan BB, Blum D, Guidotti RJ, Hargrett NT, Anderson RL, Hill DL, Broome CV, Band JD, Fraser DW (1980) Toxic-shock syndrome in menstruating women: association with tampon use and Staphylococcus aureus and clinical features in 52 cases. N Engl J Med 303:1436–1442PubMedCrossRefGoogle Scholar
  277. Sharma NK, Rees CE, Dodd CE (2000) Development of a single-reaction multiplex PCR toxin typing assay for Staphylococcus aureus strains. Appl Environ Microbiol 66:1347–1353PubMedCrossRefGoogle Scholar
  278. Shaw C, Stitt JM, Cowan ST (1951) Staphylococci and their classification. J Gen Microbiol 5:1010–1023PubMedGoogle Scholar
  279. Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, Bost DA, Riehman M, Naidich S, Kreiswirth BN (1999) Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37:3556–3563PubMedGoogle Scholar
  280. Shore AC, Rossney AS, O’Connell B, Herra CM, Sullivan DJ, Humphreys H, Coleman DC (2008) Detection of staphylococcal cassette chromosome mec-associated DNA segments in multiresistant methicillin-susceptible Staphylococcus aureus (MSSA) and identification of Staphylococcus epidermidis ccrAB4 in both methicillin-resistant S. aureus and MSSA. Antimicrob Agents Chemother 52:4407–4419PubMedCrossRefGoogle Scholar
  281. Singh A, Goering RV, Simjee S, Foley SL, Zervos MJ (2006) Application of molecular techniques to the study of hospital infection. Clin Microbiol Rev 19:512–530PubMedCrossRefGoogle Scholar
  282. Sloos JH, Horrevorts AM, Van Boven CP, Dijkshoorn L (1998) Identification of multiresistant Staphylococcus epidermidis in neonates of a secondary care hospital using pulsed field gel electrophoresis and quantitative antibiogram typing. J Clin Pathol 51:62–67PubMedCrossRefGoogle Scholar
  283. Sloos JH, Dijkshoorn L, Vogel L, van Boven CP (2000) Performance of phenotypic and genotypic methods to determine the clinical relevance of serial blood isolates of Staphylococcus epidermidis in patients with septicemia. J Clin Microbiol 38:2488–2493PubMedGoogle Scholar
  284. Snopková S, Götz F, Doškař J, Rosypal S (1994) Pulsed-field gel electrophoresis of the genomic restriction fragments of coagulase-negative staphylococci. FEMS Microbiol Lett 124:131–139PubMedCrossRefGoogle Scholar
  285. Somerville GA, Beres SB, Fitzgerald JR, DeLeo FR, Cole RL, Hoff JS, Musser JM (2002) In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. J Bacteriol 184:1430–1437PubMedCrossRefGoogle Scholar
  286. Spence RP, Wright V, Ala-Aldeen DA, Turner DP, Wooldridge KG, James R (2008) Validation of virulence and epidemiology DNA microarray for identification and characterization of Staphylococcus aureus isolates. J Clin Microbiol 46:1620–1627PubMedCrossRefGoogle Scholar
  287. Spergser J, Wieser M, Taubel M, Rossello-Mora RA, Rosengarten R, Busse HJ (2003) Staphylococcus nepalensis sp. nov., isolated from goats of the Himalayan region. Int J Syst Evol Microbiol 53:2007–2011PubMedCrossRefGoogle Scholar
  288. Štěpán J, Pantůček R, Růžičková V, Rosypal S, Hájek V, Doškař J (2001) Identification of Staphylococcus aureus based on PCR amplification of species specific genomic 826 bp sequence derived from a common 44-kb SmaI restriction fragment. Mol Cell Probes 15:249–257PubMedCrossRefGoogle Scholar
  289. Štěpán J, Pantůček R, Doškař J (2004) Molecular diagnostics of clinically important staphylococci. Folia Microbiol 49:353–386Google Scholar
  290. Stephan R, Annemuller C, Hassan AA, Lammler C (2001) Characterization of enterotoxigenic Staphylococcus aureus strains isolated from bovine mastitis in north-east Switzerland. Vet Microbiol 78:373–382PubMedCrossRefGoogle Scholar
  291. Stephens AJ, Huygens F, Giffard PM (2007) Systematic derivation of marker sets for staphylococcal cassette chromosome mec typing. Antimicrob Agents Chemother 51:2954–2964PubMedCrossRefGoogle Scholar
  292. Straub JA, Hertel C, Hammes WP (1999) A 23S rDNA-targeted polymerase chain reaction-based system for detection of Staphylococcus aureus in meat starter cultures and dairy products. J Food Prot 62:1150–1156PubMedGoogle Scholar
  293. Strommenger B, Kettlitz C, Weniger T, Harmsen D, Friedrich AW, Witte W (2006) Assignment of Staphylococcus isolates to groups by spa typing, SmaI macrorestriction analysis, and multilocus sequence typing. J Clin Microbiol 44:2533–2540PubMedCrossRefGoogle Scholar
  294. Strommenger B, Schmidt C, Werner G, Roessle-Lorch B, Bachmann TT, Witte W (2007) DNA microarray for the detection of therapeutically relevant antibiotic resistance determinants in clinical isolates of Staphylococcus aureus. Mol Cell Probes 21:161–170PubMedCrossRefGoogle Scholar
  295. Strommenger B, Braulke C, Heuck D, Schmidt C, Pasemann B, Nubel U, Witte W (2008a) spa Typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J Clin Microbiol 46:574–581PubMedCrossRefGoogle Scholar
  296. Strommenger B, Braulke C, Pasemann B, Schmidt C, Witte W (2008b) Multiplex PCR for rapid detection of Staphylococcus aureus isolates suspected to represent community-acquired strains. J Clin Microbiol 46:582–587PubMedCrossRefGoogle Scholar
  297. Struelens MJ (1996) Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect 2:2–11PubMedCrossRefGoogle Scholar
  298. Struelens MJ (1998) Tracking the epidemiology of antimicrobial drug resistance in hospitals: time to deploy molecular typing. J Med Microbiol 47:1035–1036PubMedCrossRefGoogle Scholar
  299. Sung JM, Lloyd DH, Lindsay JA (2008) Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology 154:1949–1959PubMedCrossRefGoogle Scholar
  300. Suzuki M, Tawada Y, Kato M, Hori H, Mamiya N, Hayashi Y, Nakano M, Fukushima R, Katai A, Tanaka T, Hata M, Matsumoto M, Takahashi M, Sakae K (2006) Development of a rapid strain differentiation method for methicillin-resistant Staphylococcus aureus isolated in Japan by detecting phage-derived open-reading frames. J Appl Microbiol 101:938–947PubMedCrossRefGoogle Scholar
  301. Švec P, Vancanneyt M, Sedláček I, Engelbeen K, Štětina V, Swings J, Petráš P (2004) Reclassification of Staphylococcus pulvereri Zakrzewska-Czerwinska et al. 1995 as a later synonym of Staphylococcus vitulinus Webster et al. 1994. Int J Syst Evol Microbiol 54:2213–2215PubMedCrossRefGoogle Scholar
  302. Takahashi T, Satoh I, Kikuchi N (1999) Phylogenetic relationships of 38 taxa of the genus Staphylococcus based on 16S rRNA gene sequence analysis. Int J Syst Bacteriol 49:725–728PubMedCrossRefGoogle Scholar
  303. Takano T, Higuchi W, Otsuka T, Baranovich T, Enany S, Saito K, Isobe H, Dohmae S, Ozaki K, Takano M, Iwao Y, Shibuya M, Okubo T, Yabe S, Shi D, Reva I, Teng LJ, Yamamoto T (2008) Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother 52:837–845PubMedCrossRefGoogle Scholar
  304. Takeuchi F, Watanabe S, Baba T, Yuzawa H, Ito T, Morimoto Y, Kuroda M, Cui L, Takahashi M, Ankai A, Baba S, Fukui S, Lee JC, Hiramatsu K (2005) Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187:7292–7308PubMedCrossRefGoogle Scholar
  305. Tanasupawat S, Hashimoto Y, Ezaki T, Kozaki M, Komagata K (1992) Staphylococcus piscifermentans sp. nov., from fermented fish in Thailand. Int J Syst Bacteriol 42:577–581PubMedCrossRefGoogle Scholar
  306. Te Witt R, Kanhai V, van Leeuwen WB (2009) Comparison of the DiversiLab system, pulsed field gel electrophoresis and multi locus sequence typing for the characterization of epidemic reference MRSA strains. J Microbiol Methods 77:130–133PubMedCrossRefGoogle Scholar
  307. Tenover FC, Arbeit R, Archer G, Biddle J, Byrne S, Goering R, Hancock G, Hebert GA, Hill B, Hollis R et al (1994) Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus. J Clin Microbiol 32:407–415PubMedGoogle Scholar
  308. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239PubMedGoogle Scholar
  309. Tenover FC, Arbeit RD, Goering RV (1997) How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular Typing Working Group of the Society for Healthcare Epidemiology of America. Infect Control Hosp Epidemiol 18:426–439PubMedCrossRefGoogle Scholar
  310. Tenover FC (2007) Rapid detection and identification of bacterial pathogens using novel molecular technologies: infection control and beyond. Clin Infect Dis 44:418–423PubMedCrossRefGoogle Scholar
  311. Tenover FC, Vaughn RR, McDougal LK, Fosheim GE, McGowan JE Jr (2007) Multiple-locus variable-number tandem-repeat assay analysis of methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol 45:2215–2219PubMedCrossRefGoogle Scholar
  312. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721PubMedCrossRefGoogle Scholar
  313. Thomas WD Jr, Archer GL (1989) Identification and cloning of the conjugative transfer region of Staphylococcus aureus plasmid pGO1. J Bacteriol 171:684–691PubMedGoogle Scholar
  314. Thomas DY, Jarraud S, Lemercier B, Cozon G, Echasserieau K, Etienne J, Gougeon ML, Lina G, Vandenesch F (2006) Staphylococcal enterotoxin-like toxins U2 and V, two new staphylococcal superantigens arising from recombination within the enterotoxin gene cluster. Infect Immun 74:4724–4734PubMedCrossRefGoogle Scholar
  315. Thomas D, Chou S, Dauwalder O, Lina G (2007) Diversity in Staphylococcus aureus enterotoxins. Chem Immunol Allergy 93:24–41PubMedCrossRefGoogle Scholar
  316. Thompson NE, Pattee PA (1977) Transformation in Staphylococcus aureus: role of bacteriophage and incidence of competence among strains. J Bacteriol 129:778–788PubMedGoogle Scholar
  317. Thompson NE, Razdan M, Kuntsmann G, Aschenbach JM, Evenson ML, Bergdoll MS (1986) Detection of staphylococcal enterotoxins by enzyme-linked immunosorbent assays and radioimmunoassays: comparison of monoclonal and polyclonal antibody systems. Appl Environ Microbiol 51:885–890PubMedGoogle Scholar
  318. Todd J, Fishaut M, Kapral F, Welch T (1978) Toxic-shock syndrome associated with phage-group-I staphylococci. Lancet 2:1116–1118PubMedCrossRefGoogle Scholar
  319. Tokue Y, Sugano K, Saito D, Noda T, Ohkura H, Shimosato Y, Sekiya T (1994) Detection of novel mutations in the gyrA gene of Staphylococcus aureus by nonradioisotopic single-strand conformation polymorphism analysis and direct DNA sequencing. Antimicrob Agents Chemother 38:428–431PubMedCrossRefGoogle Scholar
  320. Tormo MA, Ferrer MD, Maiques E, Ubeda C, Selva L, Lasa I, Calvete JJ, Novick RP, Penades JR (2008) Staphylococcus aureus pathogenicity island DNA is packaged in particles composed of phage proteins, J. J Bacteriol 190:2434–2440PubMedCrossRefGoogle Scholar
  321. Tristan A, Bes M, Meugnier H, Lina G, Bozdogan B, Courvalin P, Reverdy ME, Enright MC, Vandenesch F, Etienne J (2007) Global distribution of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus. Emerg Infect Dis 13:594–600PubMedCrossRefGoogle Scholar
  322. Trülzsch K, Grabein B, Schumann P, Mellmann A, Antonenka U, Heesemann J, Becker K (2007) Staphylococcus pettenkoferi sp. nov., a novel coagulase-negative staphylococcal species isolated from human clinical specimens. Int J Syst Evol Microbiol 57:1543–1548PubMedCrossRefGoogle Scholar
  323. Tveten Y, Kristiansen BE, Ask E, Jenkins A, Hofstad T (1991) DNA fingerprinting of isolates of Staphylococcus aureus from newborns and their contacts. J Clin Microbiol 29:1100–1105PubMedGoogle Scholar
  324. Ubelaker MH, Rosenblum ED (1978) Transduction of plasmid determinants in Staphylococcus aureus and Escherichia coli. J Bacteriol 133:699–707PubMedGoogle Scholar
  325. van Belkum A, Bax R, Peerbooms P, Goessens WH, van Leeuwen N, Quint WG (1993) Comparison of phage typing and DNA fingerprinting by polymerase chain reaction for discrimination of methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol 31:798–803PubMedGoogle Scholar
  326. van Belkum A, Kluytmans J, van Leeuwen W, Bax R, Quint W, Peters E, Fluit A, Vandenbroucke-Grauls C, van den Brule A, Koeleman H et al (1995) Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains. J Clin Microbiol 33:1537–1547PubMedGoogle Scholar
  327. van Belkum A, van Leeuwen W, Kaufmann ME, Cookson B, Forey F, Etienne J, Goering R, Tenover F, Steward C, O’Brien F, Grubb W, Tassios P, Legakis N, Morvan A, El Solh N, de Ryck R, Struelens M, Salmenlinna S, Vuopio-Varkila J, Kooistra M, Talens A, Witte W, Verbrugh H (1998) Assessment of resolution and intercenter reproducibility of results of genotyping Staphylococcus aureus by pulsed-field gel electrophoresis of SmaI macrorestriction fragments: a multicenter study. J Clin Microbiol 36:1653–1659PubMedGoogle Scholar
  328. van Belkum A, Struelens M, de Visser A, Verbrugh H, Tibayrenc M (2001) Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev 14:547–560PubMedCrossRefGoogle Scholar
  329. van der Zee A, Verbakel H, van Zon JC, Frenay I, van Belkum A, Peeters M, Buiting A, Bergmans A (1999) Molecular genotyping of Staphylococcus aureus strains: comparison of repetitive element sequence-based PCR with various typing methods and isolation of a novel epidemicity marker. J Clin Microbiol 37:342–349PubMedGoogle Scholar
  330. van der Zee A, Heck M, Sterks M, Harpal A, Spalburg E, Kazobagora L, Wannet W (2005) Recognition of SCCmec types according to typing pattern determined by multienzyme multiplex PCR-amplified fragment length polymorphism analysis of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:6042–6047PubMedCrossRefGoogle Scholar
  331. van Leeuwen WB, Jay C, Snijders S, Durin N, Lacroix B, Verbrugh HA, Enright MC, Troesch A, van Belkum A (2003) Multilocus sequence typing of Staphylococcus aureus with DNA array technology. J Clin Microbiol 41:3323–3326PubMedCrossRefGoogle Scholar
  332. van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA (2006) The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 188:1310–1315PubMedCrossRefGoogle Scholar
  333. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M, Greenland T, Reverdy ME, Etienne J (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978–984PubMedCrossRefGoogle Scholar
  334. Vaneechoutte M (1996) DNA fingerprinting techniques for microorganisms: A proposal for classification and nomenclature. Mol Biotechnol 6:115–142PubMedCrossRefGoogle Scholar
  335. Vannuffel P, Heusterspreute M, Bouyer M, Vandercam B, Philippe M, Gala JL (1999) Molecular characterization of femA from Staphylococcus hominis and Staphylococcus saprophyticus, and femA-based discrimination of staphylococcal species. Res Microbiol 150:129–141PubMedCrossRefGoogle Scholar
  336. Vautor E, Magnone V, Rios G, Le Brigand K, Bergonier D, Lina G, Meugnier H, Barbry P, Thiery R, Pepin M (2009) Genetic differences among Staphylococcus aureus isolates from dairy ruminant species: a single-dye DNA microarray approach. Vet Microbiol 133:105–114PubMedCrossRefGoogle Scholar
  337. Varaldo PE, Kilpper-Bälz R, Biavasco F, Satta G, Schleifer KH (1988) Staphylococcus delphini sp. nov., a coagulase-positive species isolated from dolphins. Int J Syst Bacteriol 38:436–439CrossRefGoogle Scholar
  338. Velappan N, Snodgrass JL, Hakovirta JR, Marrone BL, Burde S (2001) Rapid identification of pathogenic bacteria by single-enzyme amplified fragment length polymorphism analysis. Diagn Microbiol Infect Dis 39:77–83PubMedCrossRefGoogle Scholar
  339. Vernozy-Rozand C, Mazuy C, Meugnier H, Bes M, Lasne Y, Fiedler F, Etienne J, Freney J (2000) Staphylococcus fleurettii sp. nov., isolated from goat’s milk cheeses. Int J Syst Evol Microbiol 50:1521–1527PubMedCrossRefGoogle Scholar
  340. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831PubMedCrossRefGoogle Scholar
  341. Versalovic J, Woods CR Jr, Georghiou PR, Hamill RJ, Lupski JR (1993) DNA-based identification and epidemiologic typing of bacterial pathogens. Arch Pathol Lab Med 117:1088–1098PubMedGoogle Scholar
  342. Versalovic J, Kapur V, Koeuth T, Mazurek GH, Whittam TS, Musser JM, Lupski JR (1995) DNA fingerprinting of pathogenic bacteria by fluorophore-enhanced repetitive sequence-based polymerase chain reaction. Arch Pathol Lab Med 119:23–29PubMedGoogle Scholar
  343. von Eiff C, Becker K, Machka K, Stammer H, Peters G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 344:11–16CrossRefGoogle Scholar
  344. von Eiff C, Friedrich AW, Peters G, Becker K (2004) Prevalence of genes encoding for members of the staphylococcal leukotoxin family among clinical isolates of Staphylococcus aureus. Diagn Microbiol Infect Dis 49:157–162CrossRefGoogle Scholar
  345. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  346. Waldon E, Sobis-Glinkowska M, Szewczyk EM (2002) Evaluation of selected features of Staphylococcus cohnii enabling colonization of humans. Folia Microbiol 47:565–571CrossRefGoogle Scholar
  347. Webster JA, Bannerman TL, Hubner RJ, Ballard DN, Cole EM, Bruce JL, Fiedler F, Schubert K, Kloos WE (1994) Identification of the Staphylococcus sciuri species group with EcoRI fragments containing rRNA sequences and description of Staphylococcus vitulus sp. nov. Int J Syst Bacteriol 44:454–460PubMedCrossRefGoogle Scholar
  348. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218PubMedCrossRefGoogle Scholar
  349. Welsh J, McClelland M (1992) PCR-amplified length polymorphisms in tRNA intergenic spacers for categorizing staphylococci. Mol Microbiol 6:1673–1680PubMedCrossRefGoogle Scholar
  350. Westin L, Miller C, Vollmer D, Canter D, Radtkey R, Nerenberg M, O’Connell JP (2001) Antimicrobial resistance and bacterial identification utilizing a microelectronic chip array. J Clin Microbiol 39:1097–1104PubMedCrossRefGoogle Scholar
  351. Widjojoatmodjo MN, Fluit AC, Verhoef J (1995) Molecular identification of bacteria by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 33:2601–2606PubMedGoogle Scholar
  352. Wieser M, Busse HJ (2000) Rapid identification of Staphylococcus epidermidis. Int J Syst Evol Microbiol 50:1087–1093PubMedCrossRefGoogle Scholar
  353. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  354. Wilson KH, Wilson WJ, Radosevich JL, DeSantis TZ, Viswanathan VS, Kuczmarski TA, Andersen GL (2002) High-density microarray of small-subunit ribosomal DNA probes. Appl Environ Microbiol 68:2535–2541PubMedCrossRefGoogle Scholar
  355. Winslow CE, Winslow A (1908) The systematic Relationships of the Coccaceae. Wiley, New YorkGoogle Scholar
  356. Witte W, Braulke C, Cuny C, Strommenger B, Werner G, Heuck D, Jappe U, Wendt C, Linde HJ, Harmsen D (2005) Emergence of methicillin-resistant Staphylococcus aureus with Panton-Valentine leukocidin genes in central Europe. Eur J Clin Microbiol Infect Dis 24:1–5PubMedCrossRefGoogle Scholar
  357. Witte W, Strommenger B, Werner G (2006) The Staphylococcus: Diagnostics, typing and taxonomy. In: Fischetti VA, Novick RP, Ferretti JJ, PortnoyDA, Rood JI (eds) Gram-positive pathogens, 2nd edn. ASM Press, Washington, DC, pp 371–380Google Scholar
  358. Wolter DJ, Tenover FC, Goering RV (2007) Allelic variation in genes encoding Panton-Valentine leukocidin from community-associated Staphylococcus aureus. Clin Microbiol Infect 13:827–830PubMedCrossRefGoogle Scholar
  359. Yamaguchi T, Hayashi T, Takami H, Nakasone K, Ohnishi M, Nakayama K, Yamada S, Komatsuzawa H, Sugai M (2000) Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol Microbiol 38:694–705PubMedCrossRefGoogle Scholar
  360. Yamaguchi T, Hayashi T, Takami H, Ohnishi M, Murata T, Nakayama K, Asakawa K, Ohara M, Komatsuzawa H, Sugai M (2001) Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase, EDIN-C. Infect Immun 69:7760–7771PubMedCrossRefGoogle Scholar
  361. Yamaguchi T, Nishifuji K, Sasaki M, Fudaba Y, Aepfelbacher M, Takata T, Ohara M, Komatsuzawa H, Amagai M, Sugai M (2002) Identification of the Staphylococcus aureus etd pathogenicity island which encodes a novel exfoliative toxin, ETD, and EDIN-B. Infect Immun 70:5835–5845PubMedCrossRefGoogle Scholar
  362. Yarwood JM, McCormick JK, Paustian ML, Orwin PM, Kapur V, Schlievert PM (2002) Characterization and expression analysis of Staphylococcus aureus pathogenicity island 3. Implications for the evolution of staphylococcal pathogenicity islands. J Biol Chem 277:13138–13147PubMedCrossRefGoogle Scholar
  363. Yugueros J, Temprano A, Sanchez M, Luengo JM, Naharro G (2001) Identification of Staphylococcus spp. by PCR-restriction fragment length polymorphism of gap gene. J Clin Microbiol 39:3693–3695PubMedCrossRefGoogle Scholar
  364. Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900PubMedCrossRefGoogle Scholar
  365. Zhang S, Iandolo JJ, Stewart GC (1998) The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol Lett 168:227–233PubMedCrossRefGoogle Scholar
  366. Zhang YQ, Ren SX, Li HL, Wang YX, Fu G, Yang J, Qin ZQ, Miao YG, Wang WY, Chen RS, Shen Y, Chen Z, Yuan ZH, Zhao GP, Qu D, Danchin A, Wen YM (2003) Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49:1577–1593PubMedCrossRefGoogle Scholar
  367. Zhang K, McClure JA, Elsayed S, Louie T, Conly JM (2005) Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:5026–5033PubMedCrossRefGoogle Scholar
  368. Zhang K, McClure JA, Elsayed S, Louie T, Conly JM (2008) Novel multiplex PCR assay for simultaneous identification of community-associated methicillin-resistant Staphylococcus aureus strains USA300 and USA400 and detection of mecA and Panton-Valentine leukocidin genes, with discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J Clin Microbiol 46:1118–1122PubMedCrossRefGoogle Scholar
  369. Zhang K, McClure JA, Elsayed S, Conly JM (2009) Novel staphylococcal cassette chromosome mec type, tentatively designated type VIII, harboring class A mec and type 4 ccr gene complexes in a Canadian epidemic strain of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:531–540PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jiří Doškař
    • 1
    Email author
  • Roman Pantůček
    • 1
  • Vladislava Růžičková
    • 1
  • Ivo Sedláček
    • 2
  1. 1.Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Czech Collection of Microorganisms, Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations