Skip to main content

Chapter 3 Control of the Metabolic Flow in Tetrapyrrole Biosynthesis: Regulation of Expression and Activity of Enzymes in the Mg Branch of Tetrapyrrole Biosynthesis

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

The complex regulation, metabolism and physiology of the Mg branch of tetrapyrrole biosynthesis have developed into an attractive research area. Any change in plant development as well as in growth and environmental conditions provokes changes in metabolic activities of chlorophyll synthesis including de novo synthesis of proteins and cofactors, as well as protein modification and degradation. Transcriptional and different posttranslational control mechanisms have been reported for chlorophyll synthesis, which underscore the need for a very dynamic and flexible regulatory system. In the following paragraphs the enzymes of the Mg branch and their unique catalytic reactions are introduced. The control of expression and posttranslational modification of enzymes, the association of enzymes with cofactors and other compounds and the assembly into protein complexes as well as the activation mechanisms of these enzymes will be surveyed. Furthermore, the review discusses particular regulatory incentives originating from the Mg branch to be advantageous for the entire tetrapyrrole biosynthetic pathway and, hence, for chloroplast development. It also comments on the significant gaps in our understanding of the regulatory mechanisms of the Mg branch of tetrapyrrole biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALA:

– 5-aminolevulinic acid

MTF:

–S-Adenosyl-L-methionine:Mg protoporphyrin IX methyltransferase

References

  • Alawady AE and Grimm B (2005) Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant J 41: 282–290

    Article  PubMed  CAS  Google Scholar 

  • Alawady A, Reski R, Yaronskaya E and Grimm B (2005) Cloning and expression of the tobacco CHLM sequence encoding Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase. Plant Mol Biol 57: 679–691

    Article  PubMed  CAS  Google Scholar 

  • Apchelimov AA, Soldatova OP, Ezhova TA, Grimm B and Shestakov SV (2007) The analysis of the ChlI 1 and ChlI 2 genes using acifluorfen-resistant mutant of Arabidopsis thaliana. Planta 225: 935–943

    Article  PubMed  CAS  Google Scholar 

  • Averina NG, Yaronskaya EB, Rassadina VV and Walter G (1996) J Photochem Photobiol 36: 17

    Article  CAS  Google Scholar 

  • Axelsson E, Lundqvist J, Sawicki A, Nilsson S, Schröder I, Al-Karadaghi S, Willows RD and Hansson M (2006) Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. Plant Cell 18: 3606–3616

    Article  PubMed  CAS  Google Scholar 

  • Baier M and Dietz KJ (2005) Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. J Exp Bot 56: 1449–1462

    Article  PubMed  CAS  Google Scholar 

  • Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222: 743–756

    Article  PubMed  CAS  Google Scholar 

  • Berthold DA and Stenmark P (2003) Membrane-bound diiron carboxylate proteins. Ann Rev Plant Biol 54: 497–517

    Article  CAS  Google Scholar 

  • Block MA, Tewari AK, Albrieux C, Maréchal E and Joyard J (2002) The plant S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269: 240–248

    Article  PubMed  CAS  Google Scholar 

  • Bollivar DW and Beale SI (1996) The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase. Plant Physiol 112: 105–114

    PubMed  CAS  Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM and Bauer CE (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237: 622–640

    Article  PubMed  CAS  Google Scholar 

  • Chekounova E, Voronetskaya V, Papenbrock J, Grimm B and Beck CF (2001) Characterization of Chlamydomonas mutants defective in the H subunit of Mg-chelatase. Mol Genet Genom 266: 363–373

    Article  CAS  Google Scholar 

  • Chew AG and Bryant DA (2007)Characterization of a plant-like protochlorophyllide a divinyl reductase in green sulfur bacteria. J Biol Chem 282: 2967–2975

    Article  PubMed  CAS  Google Scholar 

  • Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP and Hunter CN (2005) Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44: 7603–7012

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt U, Grimm B and Hörtensteiner S (2004) Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Eichacker LA, Helfrich M, Rüdiger W and Müller B (1996) Stabilization of chlorophyll a-binding apoproteins P700, CP47, CP43, D2, and D1 by chlorophyll a or Zn-pheophytin a. J Biol Chem 271: 32174–32179

    Article  PubMed  CAS  Google Scholar 

  • Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD and Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311: 111–122

    Article  PubMed  CAS  Google Scholar 

  • Fusada N, Masuda T, Kuroda H, Shimada H, Ohta H and Takamiya K (2005) Identification of a novel cis-element exhibiting cytokinin-dependent protein binding in vitro in the 5’-region of NADPH-protochlorophyllide oxidoreductase gene in cucumber. Plant Mol Biol 59: 631–645

    Article  PubMed  CAS  Google Scholar 

  • Gibson LCD, Willows RD, Kannangara CG, von Wettstein D and Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Biochemistry 92: 1941–1944

    CAS  Google Scholar 

  • Gibson LCD, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M and Hunter CN (1996) A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Plant Physiol 111: 61–71

    Article  PubMed  CAS  Google Scholar 

  • Gough SP, Petersen BO, Duus JO (2000) Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. Proc Natl Acad Sci USA 97: 6908–6913

    Article  PubMed  CAS  Google Scholar 

  • Gräfe S, Saluz HP, Grimm B and Hänel F (1999) Mg-chelatase of tobacco: the role of the subunit CHL D in the chelation step of protoporphyrin IX. Proc Natl Acad Sci USA 96: 1941–1946

    Article  PubMed  Google Scholar 

  • Grimm, B., Porra R, Rüdiger, W and Scheer H. (2006) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications Series: Advances in Photosynthesis and Respiration, Vol.25. Springer, Dordrecht

    Book  Google Scholar 

  • Hansson A, Kannangara CG, von Wettstein D and Hansson M (1999) Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci USA 96: 1744–1749

    Article  PubMed  CAS  Google Scholar 

  • Hansson A, Willows RD, Roberts TH and Hansson M (2002) Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Natl Acad Sci USA 99: 13944–13949

    Article  PubMed  CAS  Google Scholar 

  • He ZH, Li J, Sundqvist C and Timko MP (1994) Leaf developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.). Plant Physiol 106: 537–546

    PubMed  CAS  Google Scholar 

  • Hendry GAF, Houghton JD and Brown SB (1987) Chlorophyll degradation. A biological enigma. New Phytol 107: 255–302

    Article  CAS  Google Scholar 

  • Hinchigeri SB, Hundle B and Richards WR (1997) Demonstration that the BchH protein of Rhodobacter capsulatus activates S-adenosyl-L-methionine:magnesium protoporphyrin IX methyltransferase. FEBS Lett 407: 337–342

    Article  PubMed  CAS  Google Scholar 

  • Hiriart J-B, Lehto K, Tyystjärvi, Junttila T and Aro E-M (2002) Suppression of a key gene involved in chlorophyll biosynthesis by means of virus-inducing gene silencing. Plant Mol Biol 50: 213–224

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Grundmann G and Paulsen H (2007) Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb)J Mol Biol 366: 1045–1054

    Article  PubMed  CAS  Google Scholar 

  • Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PG, Hisabori T, Takamiya K and Masuda T (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282: 19282–19291

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Yokono M, Tanaka R and Tanaka A (2008) Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in synechocystis sp. PCC6803. J Biol Chem 283: 9002–9011

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LCD, Henningsen KW and Hunter CN (1996a) Expression of the chlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271: 16662–16667

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM, Kannangara CG, von Wettstein D and Henningsen KW (1996b) Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet 250: 383–394

    PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LCD and Hunter CN (1999a) ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits. Biochem J 339: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LC, Shephard F, Smith V and Hunter CN (1999b) Introduction of a new branchpoint in tetrapyrrole biosynthesis in Escherichia coli by co-expression of genes encoding the chlorophyll-specific enzymes magnesium chelatase and magnesium protoporphyrin methyltransferase. FEBS Lett 455: 349–354

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Reid JD and Hunter CN (2000) Modification of cysteine residues in the ChlI and ChlH subunits of magnesium chelatase results in enzyme inactivation. Biochem J 352: 435–441

    Article  PubMed  CAS  Google Scholar 

  • Jung S (2004) Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. Plant Physiol Biochem 42: 225–231

    Article  PubMed  CAS  Google Scholar 

  • Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H and An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44: 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Kannangara CG, Vothknecht UC, Hansson M and von Wettstein D (1997) Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Mol Gen Genet 254: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R and, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316: 715–719

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP and Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9: 1337–1346

    PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, Rudiger W and Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA 94: 14168–14172

    Article  PubMed  CAS  Google Scholar 

  • Kruse E, Mock HP and Grimm B (1997) Isolation and characterisation of tobacco ( Nicotiana tabacum) cDNA clones encoding proteins involved in magnesium chelation into protoporphyrin IX. Plant Mol Biol 35: 1053–056

    Article  PubMed  CAS  Google Scholar 

  • Kusnetsov V, Herrmann RG, Kulaeva ON and Oelmüller R (1998) Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Mol Gen Genet 259: 21–28

    PubMed  CAS  Google Scholar 

  • Lake V and Willows RD (2003) Rapid extraction of RNA and analysis of transcript levels in Chlamydomonas reinhardtii using real-time RT-PCR: magnesium chelatase chlH, chlD and chlI gene expression. Photosynth Res 77: 69–76

    Article  PubMed  CAS  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299: 902–906

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Weinstein JD and Walker CJ (1999) Magnesium chelatase subunit D from pea: Characterization of the cDNA, heterologous expression of an enzymatically active protein and immunoassay of the native protein. Plant Mol Biol 41: 721–731

    Article  PubMed  CAS  Google Scholar 

  • McCormac AC and Terry MJ (2002) Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. Plant J 32: 549–559

    Article  PubMed  CAS  Google Scholar 

  • McCormac AC and Terry MJ (2002) Loss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response. Plant Physiol 130: 402–414

    Article  PubMed  CAS  Google Scholar 

  • Melkozernov AN, Barber J and Blankenship RE (2006) Light harvesting in photosystem I supercomplexes. Biochemistry 45: 331–345

    Article  PubMed  CAS  Google Scholar 

  • Minamizaki K, Mizoguchi T, Goto T, Tamiaki H and Fujita Y (2008) Identification of two homologous genes, chlAI and chlAII, that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 283: 2684–2692

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A and Chory J (2000) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98: 2053–2058

    Article  Google Scholar 

  • Mohanty S, Grimm B and Tripathy BC (2006) Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224: 692–699

    Article  PubMed  CAS  Google Scholar 

  • Moseley J, Quinn J, Eriksson M and Merchant S (2000) The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J 19: 2139–2151

    Article  PubMed  CAS  Google Scholar 

  • Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M and Merchant S. (2002) Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation. Plant Cell 14: 673–688

    Article  PubMed  CAS  Google Scholar 

  • Moser J, Schubert WD, Beier V, Bringemeier I, Jahn D and Heinz DW (2001) V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 20: 6583–6890

    Article  PubMed  CAS  Google Scholar 

  • Moulin M and Smith AG (2005) Regulation of tetrapyrrole biosynthesis in higher plants. Biochem Soc Trans 33: 737–742

    Article  PubMed  CAS  Google Scholar 

  • Nagata, N, Tanaka, R, Satoh, S, and Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidosis thaliana and implications for the evolution of prochlorococcus species. The Plant Cell 17: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H and Takamiya K-i (1998) Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg 2+ concentration-dependent ChlH protein within the chloroplast. Plant Cell Physiol 39: 275–284

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S and Chory J (2006) ­Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57: 739–759

    Article  PubMed  CAS  Google Scholar 

  • Osanai T, Imashimizu M, Seki A, Sato S, Tabata S, Ikeuchi M and Tanaka K (2007) An H subunit of Mg-chelatase ChlH represses transcriptional activity of a sigma factor SigE by protein–protein interaction. Poster on 7th International Conference on Tetrapyrrole Photoreceptors in Photosynthetic Organisms, Kyoto, Dec 9–14, 2007

    Google Scholar 

  • Ouchane S, Steunou AS, Picaud M and Astier C (2004) Aerobic and anaerobic Mgprotoporphyrin monomethyl ester cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system. J Biol Chem 279: 6385–6394

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J and Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis – studies for intracellular signaling involved in metabolic and developmental control of plastids. Planta 213: 667–681

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Gräfe S, Kruse E, Hänel F and Grimm B (1997) Mgchelatase of tobacco: Identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant J 12: 981–990

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Mock HP, Kruse E and Grimm B (1999) Expression studies in tetrapyrrole biosynthesis – inverse maxima of magnesium chelatase and ferrochelatase. Planta 208: 264–273

    Article  CAS  Google Scholar 

  • Papenbrock J, Mock H-P, Tanaka R, Kruse E and Grimm B (2000a) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant ­Physiol 122: 1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Pfündel E, Mock H-P and Grimm B (2000b) Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants. Plant J 22: 155–164

    Article  PubMed  CAS  Google Scholar 

  • Pesaresi P, Schneider A, Kleine T and Leister D (2007) Interorganellar communication. Curr Opin Plant Biol 10: 600–606

    Article  PubMed  CAS  Google Scholar 

  • Petersen BL, Jensen PE, Gibson LC, Stummann BM, Hunter CN and Henningsen KW (1998) Reconstitution of an active magnesium chelatase enzyme complex from the bchI, -D, and -H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli. J Bacteriol 180: 699–704

    PubMed  CAS  Google Scholar 

  • Pinta V, Picaud M, Reiss-Husson F and Astier C (2002) Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol 184: 746–753

    Article  PubMed  CAS  Google Scholar 

  • Plumley FG and Schmidt GW (1987) Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci USA 84: 146–150

    Article  PubMed  CAS  Google Scholar 

  • Pontier D, Albrieux C, Joyard J, Lagrange T and Block MA (2007) Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling. J Biol Chem 282: 2297–2304

    CAS  Google Scholar 

  • Pöpperl G, Oster U, Blos I and Rüdiger W (1997) Magnesium chelatase of Hordeum vulgare L is not activated by light but inhibited by pheophorbide <http://apps.­isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=8&SID=R2CGeb8opLMLLAenNmG&page=5&doc=42&colname=WOS&cacheurlFromRightClick=no>. Z Naturf 52: 144–152

    Google Scholar 

  • Porra RJ, Schäfer W, Katheder I and Scheer H (1995) The derivation of the oxygen atoms of the 13´-oxo and 3-acetyl groups of bacteriochlorophyll a from water in Rhodobacter sphaeroides cells adapting from respiratory to photosynthetic conditions: evidence for an anaerobic pathway for the formation of isocyclic ring E. FEBS Lett 371: 21–24

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz C, Kollosov, V.L, Briskin D, and Gawienowski M (2003) Chloroplast biogenesis: chlorophyll biosynthetic heterogeneity, multiple biosynthetic, routes and biological spin-offs. In Nalwa HS (ed) Handbook of Phtochemistry and Photobiology, Vol. 4. American Scientific Publishers, Los Angeles, pp. 183–247

    Google Scholar 

  • Reinhold T, Alawady A, Grimm B, Beran KC, Jahns P, Conrath U, Bauer J, Reiser J, Melzer M, Jeblick W and Neuhaus HE (2007) Limitation of nocturnal import of ATP into Arabidopsis chloroplasts leads to photooxidative damage. Plant J 50: 293–304

    Article  PubMed  CAS  Google Scholar 

  • Rissler HM, Collakova E, DellaPenna D, Whelan J and Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128: 770–779

    Article  PubMed  CAS  Google Scholar 

  • Rodermel S and Park S (2003) Pathways of intracellular communication: tetrapyrroles and plastid-to-nucleus signaling. Bioessays 25: 631–636

    Article  PubMed  CAS  Google Scholar 

  • Ruckle ME, DeMarco SM and Larkin RM (2007) Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 19: 3944–3960

    Article  PubMed  CAS  Google Scholar 

  • Saenger W, Jordan P and Krauss N (2002) The assembly of protein subunits and cofactors in photosystem I. Curr Opin Struct Biol 12: 244–254

    Article  PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH and Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443: 823–826

    Article  PubMed  CAS  Google Scholar 

  • Shepherd M, McLean S and Hunter CN (2005) Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis. FEBS J 272: 4532–4539

    Article  PubMed  CAS  Google Scholar 

  • Sirijovski N, Lundqvist J, Rosenbäck M, Elmlund H, Al-Karadaghi S, Willows RD and Hansson M (2008) Substrate-binding model of the chlorophyll biosynthetic magnesium chelatase BchH subunit. J Biol Chem 283: 11652–11660

    Article  PubMed  CAS  Google Scholar 

  • Soldatova O, Apchelimov A, Radukina N, Ezhova T, ­Shestakov S, Ziemann V, Hedtke B and Grimm B (2005) An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis. Mol Genet Genom 273: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Sood S, Gupta V and Tripathy BC (2005) Photoregulation of the greening process of wheat seedlings grown in red light. Plant Mol Biol 59: 269–287

    Article  PubMed  CAS  Google Scholar 

  • Surpin M, Larkin RM and Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell 14: S327–338

    PubMed  CAS  Google Scholar 

  • Susek RE, Ausubel FM and Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74: 787–799

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JY and Bauer CE (1995) Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. Possible monovinyl substrate discrimination of light-independent protochlorophyllide reductase. J Biol Chem 270: 3732–3740

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58: 321–346

    Article  PubMed  CAS  Google Scholar 

  • Tripathy BC and Rebeiz CA (1988) Chloroplast biogenesis 60: conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87: 89–94

    Article  PubMed  CAS  Google Scholar 

  • Verdecia MA, Larkin RM, Ferrer JL, Riek R, Chory J and Noel JP (2005) Structure of the Mg-chelatase cofactor GUN4 reveals a novel hand-shaped fold for porphyrin binding. PLoS Biol 3: e151.

    Article  PubMed  Google Scholar 

  • von Gromoff E, Alawady A, Meinecke L, Grimm B and Beck CF (2008) Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant Cell 20: 552–567

    Article  CAS  Google Scholar 

  • Walker CJ and Weinstein JD (1991) Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts : substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol 95: 1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ and Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327: 321–333

    PubMed  CAS  Google Scholar 

  • Walker CJ, Mansfield KE, Rezzano IN, Hanamoto CM, Smith KM and Castelfranco PA (1988) The magnesium-protoporphyrin IX (oxidative) cyclase system. Studies on the mechanism and specificity of the reaction sequence. Biochem J 255: 685–692

    PubMed  CAS  Google Scholar 

  • Wilde A, Mikolajczyk S, Alawady A, Lokstein H and Grimm B (2004) The gun4 gene is essential for cyanobacterial porphyrin metabolism. FEBS Lett 571: 119–123

    Article  PubMed  CAS  Google Scholar 

  • Willows RD (2003) Biosynthesis of chlorophylls from protoporphyrin IX. Nat Prod Rep 20: 327–341

    Article  PubMed  CAS  Google Scholar 

  • Willows RD and Beale SI (1998) Heterologous expression of the Rhodobacter capsulatus BchI, -D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. J Biol Chem 273: 34206–34213

    Article  PubMed  CAS  Google Scholar 

  • Willows RD, Gibson LCD, Kanangara CG, Hunter CN and von Wettstein D (1996) Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235: 438–445

    Article  PubMed  CAS  Google Scholar 

  • Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N and Grimm B (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224: 700–709

    Article  PubMed  CAS  Google Scholar 

  • Zheng CC, Porat R, Lu P and O’Neill SD (1998) PNZIP is a novel mesophyll-specific cDNA that is regulated by phytochrome and the circadian rhythm and encodes a protein with a leucine zipper motif. Plant Physiol 116: 27–35

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS and Paek NC (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62: 325–337

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grimm, B. (2010). Chapter 3 Control of the Metabolic Flow in Tetrapyrrole Biosynthesis: Regulation of Expression and Activity of Enzymes in the Mg Branch of Tetrapyrrole Biosynthesis. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_3

Download citation

Publish with us

Policies and ethics