Skip to main content

Chapter 20 Engineering Photosynthetic Enzymes Involved in CO2–Assimilation by Gene Shuffling

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

Enhancing photosynthesis is a promising approach for increasing plant productivity. Advances in plant transformation technology make it possible to manipulate photosynthesis by overexpressing particular genes for alleviating bottleneck steps, diverting the flux of Calvin cycle intermediates and photoassimilates, or introducing new enzymes and pathways that can positively influence photosynthesis. Furthermore, directed molecular evolution makes it possible to target selected key enzymes in photosynthetic pathways for modifying their specific catalytic or protein properties and tailoring them to best function under specified growth conditions. In this chapter, advances in directed molecular evolution technology and the use of gene shuffling methodology to modify Rubisco and Rubisco activase to enhance plant photosynthesis and growth are described. By shuffling the Chlamydomonas reinhardtii Rubisco large subunit and utilizing competitive growth selection, several mutated Rubisco enzymes with increased carboxylase activity or CO2/O2 specificity were identified. The mutations identified in the modified Chlamydomonas Rubisco variants were then introduced into the tobacco enzyme by site-directed mutagenesis. Enzyme kinetic assays indicated that the modified tobacco Rubisco enzymes displayed increased CO2/O2 specificity, carboxylase activity and reduced Km for CO2. Similarly, gene shuffling technology was used to generate several Arabidopsis thaliana Rubisco activase variants exhibiting improved thermostability in order to alleviate the inhibition of plant photosynthesis by elevated temperatures. The thermostable activase variants were then expressed in an Arabidopsis Rubisco activase deletion line created by fast-neutron mutagenesis. The positive effects of the shuffled thermostable Rubisco activase variants on Rubisco activation state, rates of photosynthesis, and growth under moderate heat stress were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aadA :

aminoglycoside 3” adenyltransferase gene

ble :

bleomycin resistant gene

GFP:

green fluorescent protein

HTP:

high-throughput

ictB :

A gene involved in HCO 3 accumulation within the cyanobacterium Synechococcus sp. PCC 7942

kc cat :

Rubisco kcat for carboxylation

Km :

the substrate concentration at which an enzyme yields one half maximum velocity

ko cat :

Rubisco kcat for oxygenation

LAI:

the ratio of total leaf surface area of a crop to the surface area of the land on which the crop grows

LSU:

Rubisco large subunit

otsA :

trehalose synthase gene

PGA:

3-phosphoglyceric acid

rbcL:

Rubisco large subunit gene

RbcS:

Rubisco small subunit gene

RCA:

Rubisco activase

RuBP:

ribulose-1,5-bisphosphate

SBPase:

sedoheptulose-1,7-bisphosphatase

SSU:

Rubisco small subunit

Vc :

maximum velocity of Rubisco carboxylation reaction

Ω:

Rubisco CO2/O2 specificity

References

  • Arnold FH and Moore JC (1997) Optimizing industrial enzymes by directed evolution. Adv Biochem Eng Biotechnol 58: 1–14

    PubMed  CAS  Google Scholar 

  • Bainbridge G, Madgwick P, Parmer S, Mitchell R, Paul M, Pitts J, Keys AJ, and Parry AJ (1995) Engineering Rubisco to change its catalytic properties. J Exp Bot 46: 1269–1276

    Article  CAS  Google Scholar 

  • Baxter CJ, Foyer CH, Turner J, Rolfe SA, and Quick WP (2003) Elevated sucrose–phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. J Exp Bot 54: 1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Boersma YL, Dröge MJ, and Quax WJ (2007) Selection strategies for improved biocatalysts. FEBS J 274: 2181–2195

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, and Stanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538

    Article  PubMed  CAS  Google Scholar 

  • Campbell JH, Lengyel JA, and Langridge J (1973) Evolution of a second gene for beta-galactosidase in Escherichia coli. Proc Natl Acad Sci USA 70: 1841–1845

    Article  PubMed  CAS  Google Scholar 

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu D, and Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304: 1151–1154

    Article  PubMed  CAS  Google Scholar 

  • Cloney LP, Bekkaoui DR, and Hemmingsen SM (1993) Co-expression of plastid chaperonin genes and a synthetic plant Rubisco operon in Escherichia coli. Plant Mol Biol 23: 1285–1290

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ and Salvucci ME (2000a) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97: 13430–13435

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ and Salvucci ME (2000b) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129: 1773–1780

    Article  Google Scholar 

  • Crameri A, Raillard S, Bermudez E, and Stemmer WPC (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391: 288–291

    Article  PubMed  CAS  Google Scholar 

  • Evans LT and Fischer RA (1999) Yield potential: definition, measurement, and significance. Crop Sci 39: 1544–1551

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, and Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    Article  CAS  Google Scholar 

  • Feller U, Crafts-Brandner SJ, and Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116: 539–546

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge S and Gatenby AA (1995) Rubisco synthesis, assembly, mechanism, and regulation. Plant Cell 7:809–819

    PubMed  CAS  Google Scholar 

  • Hartman FC and Harpel MR (1994) Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu Rev Biochem 63: 197–234

    Article  PubMed  CAS  Google Scholar 

  • Horton P (2000) Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot 51: 475–485

    Article  PubMed  CAS  Google Scholar 

  • Kaur J and Sharma R (2006) Directed evolution: an approach to engineer enzymes. Crit Rev Biotechnol 26: 165–199

    Article  PubMed  CAS  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsh HJ, Rosenkranz R, Stabler N, Schonfield B, Kreuzaler F, and Peterhansel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nature Biotech 25: 593–599

    Google Scholar 

  • Khrebtukova I and Spreitzer RJ (1996) Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5–bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 93: 13689–13693

    Article  PubMed  CAS  Google Scholar 

  • Kim YW, Lee SS, Warren RA, and Withers SG (2004) Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire. J Biol Chem 279: 42787–42793

    Article  PubMed  CAS  Google Scholar 

  • Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, and Matsuoka M (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotech 17: 76–80

    Article  CAS  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, and Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19: 3230–3241

    Article  PubMed  CAS  Google Scholar 

  • Laing WA, Ogren WL, and Hageman RH (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2 and ribulose 1,5-bisphosphate carboxylase. Plant Physiol 54: 678–685

    Article  PubMed  CAS  Google Scholar 

  • Larson EM, O’Brien CM, Zhu G, Spreitzer RJ, and Portis AR Jr (1997) Specificity for activase is changed by a Pro-89 to Arg substitution in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem 272: 17033–17037

    Article  PubMed  CAS  Google Scholar 

  • Lassner MW and McElroy D (2002) Directed molecular evolution: bridging the gap between genomics leads and commercial products. Omics 6: 153–162

    Article  PubMed  CAS  Google Scholar 

  • Lassner M and Bedbrook J (2001) Directed molecular evolution in plant improvement. Curr Opin Plant Biol 4: 152–156

    Article  PubMed  CAS  Google Scholar 

  • Lieman-Hurwitz J, Rachmilevitch S, Mittler R, Marcus Y, and Kaplan A (2003) Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3 accumulation in cyanobacteria. Plant Biotech J 1: 43–50

    Article  CAS  Google Scholar 

  • Lin H and Cornish VW (2002) Screening and selection methods for large-scale analysis of protein function. Angew Chem 41: 4402–4425

    Article  CAS  Google Scholar 

  • Lorimer GH and Miziorko HM (1980) Carbamate formation on the ε-amino group of a lysyl residue as the basis for the activation of ribulosebisphosphate carboxylase by CO2 and Mg2+. Biochemistry 19: 5321–5328

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, Gillespie VJ, and Furbank RT (2003) Expression of a cyanobacterial sucrose-phosphate synthase from Synechocystis sp. PCC 6803 in transgenic plants. J Exp Bot 54: 223–237

    Article  PubMed  CAS  Google Scholar 

  • Matsuura T and Yomo T (2006) In vitro evolution of proteins. J Biosci Bioeng 101: 449–456

    Article  PubMed  CAS  Google Scholar 

  • Miflin B (2000) Crop improvement in the 21st century. J Exp Bot 51: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Minshull J and Stemmer PC (1999) Protein evolution by molecular breeding. Curr Opin Chem Biol 3: 284–290

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa Y, Tamoi M, and Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotech 19: 965–969

    Article  CAS  Google Scholar 

  • Ness JE, Kim S, Gottman S, Pak R, Krebber A, Borchert TV, Govindarajan S, Mundorff EC, and Minshull J (2002) Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat Biotech 20: 1251–1255

    Article  CAS  Google Scholar 

  • Ogren WL (1984) Photorespiration: pathways, regulation, and modification. Annu Rev Plant Physiol 35: 415–442

    Article  CAS  Google Scholar 

  • Parikh MR, Greene, DN, Woods, KK, and Matsumura I (2006) Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli. Prot Eng Des Sel 3: 113–119

    Article  Google Scholar 

  • Parry MAJ, Andralojc PJ, Mithell RA, Madgwick PJ, and Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54: 1321–1333

    Article  PubMed  CAS  Google Scholar 

  • Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, and Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotech 24: 79–88

    Article  CAS  Google Scholar 

  • Pellny TK, Ghannoum O, Conroy JP, Schluepmann H, Smeekens S, Andralojc KP, Goddijn O, and Paul MJ (2004) Genetic modification of photosynthesis with E. coli genes for trehalose synthesis. Plant Biotech J 2: 71–82

    Article  CAS  Google Scholar 

  • Peng S, Laza RC, Visperas RM, Sanico AL, Cassman KG, and Khush GS (2000) Crop breeding, genetics and cytology. Crop Sci 40: 307–314

    Article  Google Scholar 

  • Perchorowicz JT, Raynes DA, and Jensen RG (1981) Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings. Proc Natl Acad Sci USA 78: 2985–2989

    Article  PubMed  CAS  Google Scholar 

  • Portis AR Jr, Salvucci ME, and Ogren WL (1987) Activation of ribulose bisphosphate carboxylase/oxygenase at physiological CO2 and ribulose bisphosphate concentrations by rubisco activase. Plant Physiol 82: 967–991

    Article  Google Scholar 

  • Portis AR Jr (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Physiol 43: 415–437

    Article  CAS  Google Scholar 

  • Portis AR Jr (2003) Rubisco activase – Rubisco’s catalytic chaperone. Photosynth Res 75: 11–27

    Article  PubMed  CAS  Google Scholar 

  • Powell KA, Ramer SW, Del Cardayre SB, Stemmer WP, Tobin MB, Longchamp PF, and Huisman GW (2001) Directed evolution and biocatalysis. Angew Chem Int Ed Engl 40: 3948–3959

    Article  PubMed  CAS  Google Scholar 

  • Raines CA (2006) Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant Cell Environ 29: 331–339

    Article  PubMed  CAS  Google Scholar 

  • Read BA and Tabita FR (1994) High substrate-specificity factor ribulose-bisphosphate carboxylase oxygenase from eukaryotic marine-algae and properties of recombinant cyanobacterial Rubisco containing algae residue modifications. Arch Biochem Biophys 312: 210–218

    Article  PubMed  CAS  Google Scholar 

  • Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51: 447–458

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Portis AR Jr, and Ogren WL (1985) A soluble chloroplast protein catalyzes ribulose bisphosphate carboxylase/oxygenase activation in vivo. Photosynth Res 7: 193–201

    Article  CAS  Google Scholar 

  • Salvucci ME and Crafts-Brandner SJ (2004a) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME and Crafts-Brandner SJ (2004b) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134: 1460–1470

    Article  PubMed  CAS  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, and Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148: 1821–1828

    PubMed  CAS  Google Scholar 

  • Sinclair TR (1998) Historical changes in harvest index and crop nitrogen accumulation. Crop Sci 38: 638–643

    Article  Google Scholar 

  • Sinclair TR, Purcell LC, and Sneller CH (2004) Crop transformations and the challenge to increase yield potential. Trends Plant Sci 9: 70–75

    Article  PubMed  CAS  Google Scholar 

  • Smith SA and Tabita FR (2003) Positive and negative selection of mutant forms of prokaryotic (cyanobacterial)Riboulose-1,5-bisphosphate carboxylase/oxigenase. J Mol Biol 331:557–569

    Article  PubMed  CAS  Google Scholar 

  • Somerville CR, Portis AR Jr, and Ogren WL (1982) A mutant of Arabidopsis thaliana which lacks activation of RuBP carboxylase in vivo. Plant Physiol 70: 381–387

    Article  PubMed  CAS  Google Scholar 

  • Spreitzer RJ (1993) Genetic dissection of Rubisco structure and function. Annu Rev Plant Physiol Plant Mol Biol 44: 411–434

    Article  CAS  Google Scholar 

  • Spreitzer RJ (1999) Questions about the complexity of chloroplast ribulose-1,5–bisphosphate carboxylase/oxygenase. Photosynth Res 60: 29–42

    Article  CAS  Google Scholar 

  • Spretzer RJ and Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53: 449–475

    Article  Google Scholar 

  • Stemmer WP (1994a) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91: 10747–10751

    Article  PubMed  CAS  Google Scholar 

  • Stemmer WP (1994b) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391

    Article  PubMed  CAS  Google Scholar 

  • Tabita FR (1999) Microbial ribulose-1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60: 1–28

    Article  CAS  Google Scholar 

  • Tamoi M, Nagaoka M, Miyagawa Y, and Shigeoka S (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol 47: 380–390

    Article  PubMed  CAS  Google Scholar 

  • Tcherkez GGB, Farquhar GD, and Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103: 7246–7251

    Article  PubMed  CAS  Google Scholar 

  • Tollenaar M and Lee EA (2002) Yield potential, yield stability and stress tolerance in maize. Field Crops Res 75: 161–169

    Article  Google Scholar 

  • Uemura K, Anwaruzzaman, Miyachi S, and Yokota A (1997) Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem Biophys Res Commun 233: 568–571

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Y, Snyder GW, Esau BD, Portis AR, and Ogren WL (1992) Species-dependent variation in the interaction of substrate-bound ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase. Plant Physiol 100: 1858–1862

    Article  PubMed  CAS  Google Scholar 

  • Weeks D (1992) Chlamydomonas: an increasingly powerful model plant system. Plant Cell 4: 871–878

    Google Scholar 

  • Werneke JM, Chatfield JM, and Ogren WL (1989) Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase activase polypeptides in spinach and Arabidopsis. Plant Cell 1: 815–825

    PubMed  CAS  Google Scholar 

  • Whitney SM, Baldet P, Hudson GS, and Andrews TJ (2001) Form I Rubiscos from non–green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J 26: 535–547

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Liang Z, and Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhanced photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138: 2299–2309

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Kurek I, English J, and Keenan R (2005) Laboratory-directed protein evolution. Microb Mol Biol Rev 69: 373–392

    Article  CAS  Google Scholar 

  • Zhang YX, Dawes G, and Stemmer WP (1997) Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci USA 94: 4504–4509

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Kallis RP, Ewy RG, and Portis AR Jr (2002) Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Natl Acad Sci USA 99: 3330–3334

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Kurek I, True T, Zhang X, Majumdar M, Liu L, and Lassner M (2005) Enhancing photosynthesis by improving Rubisco carboxylase activity and specificity, and Rubisco activase thermostability through DNA shuffling. In: Photosynthesis: fundamental aspects to global perspectives. Proceedings of 13th international congress on photosynthesis, pp. 841–843. Lawrence, KS, USA

    Google Scholar 

  • Zhu X-G, Portis AR Jr, and Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27: 155–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant from the National Institute of Standards and Technology-Advanced Technology Program. The authors would like to thank Thom True, Xin Zhang, Tiger Hu, Monica Majumdar, Eva Lin, Lik Hsueh and Alfred Madrigal for technical assistance; Shelly A. Straight for isolating the Arabidopsis activase deletion mutant; Dr. Cornelia Stettner of Icon Genetics AG for tobacco transformation; Dr. John A. Kiser for statistic analysis; Dr. Daniel Siehl for scientific discussions; Hoa M. Giang and Ingrid Udranszky for help in preparing the manuscript; Dr. Michael Lassner for scientific guidance; and Dr. Michael E. Salvucci from the USDA-ARS, Western Cotton Research Laboratory, Phoenix, AZ and Dr. Robert J. Spreitzer from the University of Nebraska for consultation to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genhai Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zhu, G., Kurek, I., Liu, L. (2010). Chapter 20 Engineering Photosynthetic Enzymes Involved in CO2–Assimilation by Gene Shuffling. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_20

Download citation

Publish with us

Policies and ethics