Skip to main content

Chapter 15 The Chemistry and Biology of Light-Harvesting Complex II and Thylakoid Biogenesis: raison d’etre of Chlorophylls b and c

  • Chapter
Book cover The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

Accumulation of light-harvesting complexes (LHCs) in plants is minimal in mutant strains that lack chlorophyll (Chl) b. Experiments with the model chlorophyte alga, Chlamydomonas reinhardtii, and isolated chloroplasts demonstrated that LHC apoproteins (LHCPs) are not imported into the chloroplast at a significant rate unless Chl b is synthesized. Conversion of chlorophyllide (Chlide) a to Chlide b occurs by oxidation of the 7-methyl group to the 7-formyl group by Chlide a oxygenase, which is located on the chloroplast envelope inner membrane. These results led to the hypothesis that Chl b has properties that allow interactions with the apoproteins that are distinct from those with Chl a and that Chl b regulates retention of LHCPs in the plastid, with subsequent assembly of LHCs in the envelope inner membrane. A consequence of introduction of the electronegative formyl group is withdrawal of electron density toward the periphery of the tetrapyrrole macrocycle, along the X axis of the molecule, which reduces electron density around the central Mg atom and thus increases exposure of the positive charge of the Mg. The enhanced Lewis acid ‘hardness’ of the metal in Chl b promotes formation of coordination bonds with ‘hard’ Lewis bases such as peptide bond carbonyl groups in LHCPs, which are ligands that are relatively unfavorable for coordination with Chl a. This concept is supported by comparison with Chl c and Chl d. In Chl c, withdrawal of electron density on the X axis is achieved by extension of conjugation of the ring π system through the double-bond of the trans-acrylate side-chain on C17 to the unesterified, electro­negative carboxyl group and by introduction of electronegative groups on C7 and C8. The C3-vinyl group of Chl a is oxidized to the electronegative formyl group in Chl d, which withdrawals electron density along the Y axis of the molecule and extends the Qy transition dipole moment. Chl c serves the same role in chromophyte algae as Chl b does in plants, whereas Chl d substitutes for Chl a in the cyanobacterium Acaryochloris marina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Asn (N):

– asparagine

BChl:

– bacteriochlorophyll

CAO:

– chlorophyllide a oxygenase

Chl:

– chlorophyll

Chlide:

– chlorophyllide

D:

– Debye

EPR:

– electron paramagnetic resonance

Gln (Q):

– glutamine

Glu (E):

– glutamic acid

Gly (G):

– glycine

His (H):

– histidine

Ile (I):

– isoleucine

Leu (L):

– leucine

LHC:

– light-harvesting complex

LHCP:

– light-harvesting complex apoprotein

PChlide:

– protochlorophyllide

Phe (F):

– phenylalanine

Pro (P):

– proline

Ser (S):

– serine

Trp (W):

– tryptophan

Val (V):

– valine

References

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Mimuro M, Miyachi S and Kobayashi M (2002) Quest for minor but key chlorophyll molecules in photosynthetic reaction centers – unusual pigment composition in the reaction centers of the chlorophyll d-dominated cyanobacterium Acaryochloris marina. Photosynth Res 74: 97–107

    Article  PubMed  CAS  Google Scholar 

  • Aseeva E, Ossenbühl F, Eichacker LA, Wanner G, Soll J and Vothknecht U (2004) Complex formation of Vipp1 depends on its α-helical PspA-like domain. J Biol Chem 279: 35535–35541

    Article  PubMed  CAS  Google Scholar 

  • Bachvaroff TR, Puerta MVS and Delwiche CF (2005) Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol Biol Evol 22: 1772–1782

    Article  PubMed  CAS  Google Scholar 

  • Ballschmitter K, Cotton TM and Katz JJ (1969) Chlorophyll-water interactions. Hydration, dehydration and hydrates of chlorophyll. Biochim Biophys Acta 180: 347–359

    Article  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandonà D (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    Article  PubMed  CAS  Google Scholar 

  • Belanger FC and Rebeiz CA (1984) Chlorophyll biogenesis. Spectroscopic study of net spectral shifts induced by axial coordination in metalated tetrapyrrole. Spectrochimica Acta 40A: 807–827

    CAS  Google Scholar 

  • Bhattacharya D and Medlin LK (2004) Dating algal origin using molecular clock methods. Protist 155: 9–10

    Article  PubMed  CAS  Google Scholar 

  • Bossmann B, Knoetzel J and Jansson S (1997) Screening of chlorina mutants of barley (Hordeum vulgare L.) with antibodies against light-harvesting proteins of PSI and PSII: absence of specific antenna proteins. Photosynth Res 52: 127–136

    Article  CAS  Google Scholar 

  • Cai ZL, Crossley JC, Reimers JR, Kobayashi R and Amos RD (2006) Density functional theory for charge transfer: the nature of N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J Phys Chem B 110: 15624–15632

    Article  PubMed  CAS  Google Scholar 

  • Chen M and Cai ZL (2007) Theoretical study on the thermodynamic properties of chlorophyll d-peptides coordinating ligand. Biochim Biophys Acta 1767(6): 603–609

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Eggink LL, Hoober JK and Larkin AWD (2005a) Influence of structure on binding of chlorophylls to peptide ligands. J Am Chem Soc 127: 2052–2053

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, Barber J and Blankenship RE (2005b) The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 4: 1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Chunaev AS, Mirnaya ON, Maslov VG and Boschetti A (1991) Chlorophyll b- and loroxanthin-deficient mutants of Chlamydomonas reinhardtii. Photosynthetica 25: 291–301

    CAS  Google Scholar 

  • De Martino A, Douady D, Quinet-Szely M, Rousseau B, Crépineau F, Apt K and Caron L (2000) The light-harvesting antenna of brown algae. Highly homologous proteins encoded by a multigene family. Eur J Biochem 267: 5540–5549

    Article  PubMed  Google Scholar 

  • Dolganov NAM, Bhaya D and Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 92: 636–640

    Article  PubMed  CAS  Google Scholar 

  • Dougherty RC, Strain HH, Svec WA, Uphaus RA and Katz JJ (1970) The structure, properties and distribution of chlorophyll c. J Am Chem Soc 92: 2826–2833

    Article  PubMed  CAS  Google Scholar 

  • Dudev T, Cowan JA and Lim C (1999) Competitive binding in magnesium coordination chemistry: water versus ligands of biological interest. J Am Chem Soc 121: 7665–7673

    Article  CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A plylogenetic assessment of the eukaryotic light-harvesting proteins, with implications for plastid evolution. J Mol Evol 48: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL and Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275: 9087–9090

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL, Park HS and Hoober JK (1999) The role of the envelope in assembly of light-harvesting complexes in the chloroplast: distribution of LHCP between chloroplast and vacuoles during chloroplast development in Chlamydomonas reinhardtii. In: Argyroudi-Akoyunoglou JH and Senger H (eds) The Chloroplast: From Molecular Biology to Biotechnology. Kluwer, Dordrecht, The Netherlands, pp. 161—166

    Chapter  Google Scholar 

  • Eggink LL, Park HS and Hoober JK (2001) The role of chlorophyll b in photosynthesis: hypothesis. BMC Plant Biol 1: 2

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL, LoBrutto R, Brune DC, Brusslan J, Yamasato A, Tanaka A and Hoober JK (2004) Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biol 4: 5

    Article  PubMed  Google Scholar 

  • Epstein J, Ruble JR and Craven BM (1982) The charge density in imidazole by X-ray diffraction at 103 and 293 K. Acta Cryst B38: 140–149

    CAS  Google Scholar 

  • Espineda CE, Linford AS, Devine D and Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 96: 10507–10511

    Article  PubMed  CAS  Google Scholar 

  • Frackowiak D, Bauman D, Manikowski H, Browett WR and Stillman MJ (1987) Circular dichroism and magnetic circular dichroism spectra of chlorophylls a and b in nematic liquid crystals. Biophys Chem 28: 101–114

    Article  PubMed  CAS  Google Scholar 

  • Fragata M, Nordén B and Kurucsev T (1988) Linear dichroism (250-700 nm) of chlorophyll a and pheophytin a oriented in a lamellar phase of glycerylmonooctanoate/H2O. Characterization of electronic transitions. Photochem Photobiol 47: 133–143

    Article  CAS  Google Scholar 

  • Funk C and Vermaas W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38: 0307–9404

    Article  Google Scholar 

  • Goss R, Wilhelm C and Garab G (2000) Organization of the pigment molecules in the chlorophyll a/b/c containing alga Mantoniella squamata (Prasinophyceae) studied by means of absorption, circular and linear dichroism spectroscopy. Biochim Biophys Acta 1457: 190–199

    Article  PubMed  CAS  Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    Article  PubMed  CAS  Google Scholar 

  • Gunner MR, Saleh MA, Cross E, ud-Doula A and Wise M (2000) Backbone dipoles generate positive potentials in all proteins: origins and implications of the effect. Biophys J 78: 1126–1144

    Article  PubMed  CAS  Google Scholar 

  • Hartwich G, Fiedor L, Simonin I, Cmiel E, Schäfer W, Noy D, Scherz A and Scheer H (1998) Metal-substituted bacteriochlorophylls. 1. Preparation and influence of metal and coordination on spectra. J Am Chem Soc 120: 3675–3683

    Article  CAS  Google Scholar 

  • Helfrich M, Bommer B, Oster U, Klement H, Mayer K, Larkum AWD and Rüdiger W (2003) Chlorophylls of the c family: absolute configuration and inhibition of NADPH:protochlorophyllide oxidoreductase. Biochim Biophys Acta 1605: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Hoff AJ and Amesz J (1991) Visible absorption spectroscopy of chlorophylls. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, pp. 723–738

    Google Scholar 

  • Hoober JK (1972) A major polypeptide of chloroplast membranes in Chlamydomonas reinhardtii. J Cell Biol 52: 84–96

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK (2006) Chloroplast development: whence and whither. In: Wise RR and Hoober JK (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23. Springer, Dordrecht, The Netherlands, pp. 27–51

    Chapter  Google Scholar 

  • Hoober JK and Arygroudi-Akoyunoglou JH (2004) Assembly of light-harvesting complexes of photosystem II and the role of chlorophyll b. In: Papageorgiou G and Govindjee (eds) Chlorophyll a Fluorescence: The Signature of Photosynthetic Efficiency and Green Plant Productivity, Advances in Photosynthesis and Respiration, Vol 19. Springer, Dordrecht, The Netherlands, pp. 679–712

    Google Scholar 

  • Hoober JK and Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts. Photosynth Res 61: 197–215

    Article  CAS  Google Scholar 

  • Hoober JK, Maloney MA, Asbury LR and Marks DB (1990) Accumulation of chlorophyll a/b-binding polypeptides in Chlamydomonas reinhardtii y-1 in the light or dark at 38°C. Plant Physiol 92: 419–426

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK, Boyd CO and Paavola LG (1991) Origin of thylakoid membranes in Chlamydomonas reinhardtii y-1 at 38°C. Plant Physiol 96: 1321–1328

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK, Eggink LL and Chen M (2007) Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth Res 94: 387–400

    Article  PubMed  CAS  Google Scholar 

  • Horn R and Paulsen H (2004) Early steps in the assembly of light-harvesting chlorophyll a/b complex – time-resolved fluorescence measurements. J Biol Chem 279: 44400–44406

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Grundmann G and Paulsen H (2007) Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb). J Mol Biol 366: 1045–1054

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M and Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95: 13319–13323

    Article  PubMed  CAS  Google Scholar 

  • Jäger-Vottero P, Dorne A-J, Jordanov J, Douce R and Joyard J (1997) Redox chains in chloroplast envelope membranes: spectroscopic evidence for the presence of electron carriers, including iron-sulfur centers. Proc Natl Acad Sci USA 94: 1597–1602

    Article  PubMed  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240

    Article  PubMed  Google Scholar 

  • Jeffrey SW and Wright SW (1987) A new spectrally distinct component in preparations of chlorophyll c from the micro-alga Emiliania huxleyi (Prymnesiophyceae). Biochim Biophys Acta 894: 180–188

    Article  CAS  Google Scholar 

  • Joyard J, Teyssier E, Miège C, Berny-Seigneurin D, Maréchal E, Block MA, Dorne A-J, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118: 715–723

    Article  PubMed  CAS  Google Scholar 

  • Knox RS and Spring BQ (2003) Dipole strengths in the chlorophylls. Photochem Photobiol 77: 497–501

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y and Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767: 596–602

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD (1990) Replacement of histidines of light harvesting chlorophyll a/b binding protein II disrupts chlorophyll-protein complex assembly. Plant Physiol 93: 339–342

    Article  PubMed  CAS  Google Scholar 

  • Kolossov VL and Rebeiz CA (2001) Chloroplast biogenesis 84: solubilization and partial purification of membrane-bound [4-vinyl] chlorophyllide a reductase from etiolated barley leaves. Anal Biochem 295: 214–219

    Article  PubMed  CAS  Google Scholar 

  • Komine Y, Park H, Wolfe GR and Hoober JK (1996) Secretory granules in the cytoplasm of a wall-less mutant of Chlamydomonas reinhardtii containing processed light-harveting complex apoproteins and HSP70. J Photochem Photobiol B36: 301–306

    Google Scholar 

  • Komine Y, Eggink LL, Park H and Hoober JK (2000) Vacuolar granules in Chlamydomonas reinhardtii: polyphosphate and a 70-kDa polypeptide as major components. Planta 210: 897–905

    Article  PubMed  CAS  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J and Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98: 4238–4242

    Article  PubMed  CAS  Google Scholar 

  • Krόl M, Spangfort MD, Huner NPA, Öquist G, Gustafsson P and Jansson S (1995) Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol 107: 873–883

    Article  Google Scholar 

  • Linnanto J and Korppi-Tommola J (2004) Semiempirical PM5 molecular orbital study on chlorophylls and bacteriochlorophylls: comparison of semiempirical, ab initio, and density functional results. J Comput Chem 25: 123–137

    Article  PubMed  CAS  Google Scholar 

  • Linnanto J, Martiskainen J, Lehtovuori V, Ihalainen J, Kananavicius R, Barbato R and Korppi-Tommola J (2006) Excitation energy transfer in the LHC-II trimer: a model based on the new 2.72 Å structure. Photosynth Res 87: 267–279

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Maloney MA, Hoober JK and Marks DB (1989) Kinetics of chlorophyll accumulation and formation of chlorophyll-protein complexes during greening of Chlamydomonas rinhardtii y1 at 38°C. Plant Physiol 91: 1100–1106

    Article  PubMed  CAS  Google Scholar 

  • Michel HP, Tellenbach M and Boschetti A (1983) A chlorophyll b-less mutant of Chlamydomonas reinhardtii lacking in the light-harvesting chlorophyll a/b-protein complex but not in its apoproteins. Biochim Biophys Acta 725: 417–424

    Article  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38: 274–281

    Article  CAS  Google Scholar 

  • Nagata N, Tanaka R, Satoh S and Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species. Plant Cell 17: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Noy D, Fiedor L, Hartwich G, Scheer H and Scherz A (1998) Metal-substituted bacteriochlorophylls. 2. Changes in redox potentials and electronic transition energies are dominated by intramolecular electrostatic interaction. J Am Chem Soc 120: 3684–3693

    Article  CAS  Google Scholar 

  • Noy D, Yerushalmi R, Brumfeld V, Ashur I, Scheer H, Baldridge KK and Scherz A (2000) Optical absorption and computational studies of [Ni]-bacteriochlorophyll-a. New insight into charge distribution between metal and ligands. J Am Chem Soc 122: 3937–3944

    Article  CAS  Google Scholar 

  • Oster U, Tanaka R, Tanaka A and Rüdiger W (2000) Cloning and functinal expression of the gene encoding the key enzyme for chlorophyll b synthesis (CAO) from Arabidopsis thaliana. Plant J 21: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39: 4–11

    Article  CAS  Google Scholar 

  • Park H and Hoober JK (1997) Chlorophyll synthesis modulates retention of apoproteins of light-harvesting complex II by the chloroplast in Chlamydomonas reinhardtii. Physiol Plant 101: 135–142

    Article  CAS  Google Scholar 

  • Park H, Eggink LL, Roberson RW and Hoober JK (1999) Transfer of proteins from the chloroplast to vacuoles in Chlamydomonas reinhardtii (Chlorophyta). J Phycol 35: 528–538

    Article  CAS  Google Scholar 

  • Pascal A, Caffarri S, Croce R, Sandonà D, Bassi R and Robert B (2002) A structural investigation of the central chlorophyll a binding sites in the minor photosystem II antenna protein, Lhcb4. Biochemistry 41: 2305–2310

    Article  PubMed  CAS  Google Scholar 

  • Paulsen H, Finkenzeller B and Kühlein N (1993) Pigments induce folding of light-harvesting chlorophyll a/b binding protein. Eur J Biochem 215: 809–816

    Article  PubMed  CAS  Google Scholar 

  • Phillips JN (1963) Physico-chemical properties of porphyrins. In: Florkin M and Stotz EH (eds) Comprehensive Biochemistry, Vol 9. Elsevier, Amsterdam, pp. 34–72

    Google Scholar 

  • Porra RJ (1997) Recent progress in porphyrin and chlorophyll biosynthesis. Photochem Photobiol 65: 492–516

    Article  CAS  Google Scholar 

  • Porra RJ, Schäfer W, Cmiel E, Katheder I and Scheer H (1994) The derivation of the formyl-group of chlorophyll b in higher plants from molecular oxygen. Eur J Biochem 219: 671–679

    Article  PubMed  CAS  Google Scholar 

  • Preiss S and Thornber JP (1995) Stability of the apoproteins of light-harvesting complex I and II during biogenesis of thylakoids in the chlorophyll b-less barley mutant chlorina f2. Plant Physiol 107: 709–717

    PubMed  CAS  Google Scholar 

  • Que L Jr and Ho RYN (1996) Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chem Rev 96: 2607–2624

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Ioannides IM, Kolossov V and Kopetz KJ (1999) Chloroplast biogenesis 80. Proposal of a unified multibranched chlorophyll a/b biosynthetic pathway. Photosynthetica 36: 117–128

    CAS  Google Scholar 

  • Rebeiz CA, Kolossov VL, Briskin D and Gawienowski M (2003) Chloroplast biogenesis: Chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biological spin-offs. In: Nalwa HS (ed) Handbook of Photochemistry and Photobiology, Vol 4. American Scientific Publishers, Los Angeles, CA, pp. 183–248

    Google Scholar 

  • Reinbothe S and Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237: 323–343

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe C, Bartsch S, Eggink LL, Hoober JK, Brusslan J, Andrade-Paz R, Monnet J and Reinbothe S (2006) A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci USA 103: 4777–4782

    Article  PubMed  CAS  Google Scholar 

  • Reinsberg D, Ottmann K, Booth PJ and Paulsen H (2001) Effects of chlorophyll a, chlorophyll b, and xanthophylls on the in vitro assembly kinetics of the major light-harvesting chlorophyll a/b complex, LHCIIb. J Mol Biol 308: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Remelli R, Varotto C, Sandonà D, Croce R and Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex: a mutational analysis of chromophore-binding residues. J Biol Chem 274: 33510–33521

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann, H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H and Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae and glaucophytes. Curr Biol 15: 1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Rogl H and Kühlbrandt W (1999) Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 38: 2281–2287

    Article  Google Scholar 

  • Shalchian-Tabrizi K, Skånseng M, Ronquist F, Klaveness D, Bachvaroff TR, Delwiche CF, Botnen A, Tengs T and Jakobsen KS (2006) Heterotachy processes in Rhodophyte-derived secondhand plastid genes: implications for addressing the origin and evolution of dinoflagellate plastids. Mol Biol Evol 23: 1504–1515

    Article  PubMed  CAS  Google Scholar 

  • Simonetto R, Crimi M, Sandonà D, Croce R, Cinque G, Breton J and Bassi R (1999) Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29. Biochemistry 38: 12974–12983

    Article  PubMed  CAS  Google Scholar 

  • Smith KM (1975) General features of the structure and chemistry of porphyrin compounds. In: Smith KM (ed) Porphyrins and Metalloporphyrins. Elsevier Scientific, Amsterdam, pp. 1–28

    Google Scholar 

  • Spackman MA (1992) Molecular electric moments from x-ray diffraction data. Chem Rev 92: 1769–1797

    Article  CAS  Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M and Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24: 919–928

    Article  PubMed  CAS  Google Scholar 

  • Sundholm D (2003) A density-functional-theory study of bacteriochlorophyll b. Phys Chem Chem Phys 5: 4265–4271

    Article  CAS  Google Scholar 

  • Tamiaki H, Yagai S and Miyatake T (1998) Synthetic zinc tetrapyrroles complex with pyridine as a single axial ligand. Bioorg Med Chem 6: 2171–2178

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka N, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719–12723

    Article  PubMed  CAS  Google Scholar 

  • Tanizaki S and Feig M (2005) A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. J Chem Phys 122: 124706

    Article  PubMed  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Vothknecht UC and Soll J (2006) Protein import into chloroplasts: who, when, and how? In: Wise RR and Hoober JK (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23. Springer, Dordrecht, The Netherlands, pp. 53–74

    Chapter  Google Scholar 

  • Watanabe T and Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, pp. 287–315

    Google Scholar 

  • White RA and Hoober JK (1994) Biogenesis of thylakoid membranes in Chlamydomonas reinhardtii y1: a kinetic study of initial greening. Plant Physiol 106: 583–590

    Article  PubMed  CAS  Google Scholar 

  • White RA, Wolfe GR, Komine Y and Hoober JK (1996) Localization of light-harvesting complex apoproteins in the chloroplast and cytoplasm during greening of Chlamydomonas reinhardtii at 38°C. Photosynth Res 47: 267–280

    Article  CAS  Google Scholar 

  • Whitfield TW, Crain J and Martyna GJ (2006) Structural properties of liquid N-methylacetamide via ab initio, path integral, and classical molecular dynamics. J Chem Phys 124: 094503

    Article  CAS  Google Scholar 

  • Yun D, Krebs C, Gupta GP, Iwig DF, Huynh BH and Bollinger JM Jr (2002) Facile electron transfer during formation of cluster X and kinetic competence of X for tyrosyl radical production in protein R2 of ribonucleotide reductase from mouse. Biochemistry 41: 981–990

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

MC thanks the Australian Research Council (DP045233 and DP0665169) for financial support. We thank Zheng-Li Cai for computational calculations and molecular modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kenneth Hoober .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hoober, J.K., Eggink, L.L., Chen, M., Larkum, A.W.D. (2010). Chapter 15 The Chemistry and Biology of Light-Harvesting Complex II and Thylakoid Biogenesis: raison d’etre of Chlorophylls b and c . In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_15

Download citation

Publish with us

Policies and ethics