Skip to main content

Chapter 14 Synthesis and Function of the Galactolipid Digalactosyldiacylglycerol

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

Seed plants contain two galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacyl­glycerol (DGDG) in their chloroplast membranes. DGDG is synthesized from UDP-galactose and MGDG by DGDG synthases in the envelope membranes of plastids. Galactolipids were identified in the X-ray structures of photosynthetic complexes. Deficiency of DGDG as observed in the dgd1 mutant of Arabidopsis has severe consequences for the efficiency of the photosynthetic machinery. The amount of DGDG increases when plants are grown under phosphate limitation. Under these conditions, DGDG serves as a surrogate for phospholipids thus saving phosphate for more important cellular processes. During senescence, chlorophyll and MGDG are degraded resulting in the release of free phytol and free fatty acids. At the same time, fatty acid phytyl esters accumulate in the plastoglobulies of chloroplasts. These esters serve as sink for the deposition of phytol and fatty acids which otherwise would destabilize the membrane bilayer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DGDG:

– digalactosyldiacylglycerol

GGGT:

– galactolipid:galactolipid galactosyltransferase

LCHII:

– light harvesting complex II

MGDG:

– monogalactosyldiacylglycerol

PC:

– phosphatidylglycerol

PE:

– phosphatidylethanolamine

PG:

– phosphatidylglycerol

PI:

– phosphatidylinositol

PSI, PSII:

– photosystem I, II

SQDG:

– sulfoquinovosyldiacylglycerol

References

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C and Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537: 128−132

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya Ki, Ohta H and Joyard J (2001) Two types of MGDG synthase genes found widely in both 16:3 and 18:3 plants differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 10960−10965

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Kakimoto T, Awai C, Kaneko T, Nakamura Y, Takamiya K-i, Wada H and Ohta H (2006) Comparative genomic analysis revealed a gene for monoglucosyldiacylglycerol synthase, an enzyme for photosynthetic membrane lipid synthesis in cyanobacteria. Plant Physiol 141: 1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Benson AA (1971) Lipids of chloroplasts. In: Gibbs M (ed) Structure and Function of Chloroplasts. Springer-Verlag, Berlin, pp. 129−148

    Chapter  Google Scholar 

  • Benson AA, Wiser R, Ferrari RA and Miller JA (1958) Photosynthesis of galactolipids. J Am Chem Soc 80: 4740

    Article  CAS  Google Scholar 

  • Camara-Artigas A, Brune D and Allen JP (2002) Interactions between lipids and bacterial reaction centres determined by protein crystallography. Proc Natl Acad Sci USA 99: 11055−11060

    Article  PubMed  CAS  Google Scholar 

  • Carter HE, McCluer RH and Slifer ED (1956) Lipids of wheat flour. I. Characterization of galactosylglycerol components. J Am Chem Soc 78: 3735−3738

    Article  CAS  Google Scholar 

  • Cline K and Keegstra K (1983) Galactosyltransferases involved in galactolipid biosynthesis are located in the outer membrane of pea chloroplast envelopes. Plant Physiol 71: 366−372

    Article  PubMed  CAS  Google Scholar 

  • Daram P, Brunner S, Rausch C, Steiner C, Amrhein N and Bucher M (1999) Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11: 2153–2166

    PubMed  CAS  Google Scholar 

  • Dörmann P, Hoffmann-Benning S, Balbo I and Benning C (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7: 1801−1810

    PubMed  Google Scholar 

  • Dörmann P, Balbo I and Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284: 2181−2184

    Article  PubMed  Google Scholar 

  • Dorne A-J, Block MA, Joyard J and Douce R (1982) The galactolipid:galactolipid galactosyltransferase is located on the outer membrane of the chloroplast envelope. FEBS Lett. 145: 30−34

    Article  CAS  Google Scholar 

  • Douce R (1974) Site of biosynthesis of galactolipids in spinach chloroplasts. Science 183: 852−853

    Article  PubMed  CAS  Google Scholar 

  • Essigmann B, Gueler, S, Narang RA, Linke D and Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950−1955

    Article  PubMed  CAS  Google Scholar 

  • Froehlich JE, Benning C and Dörmann P (2001) The digalactosyldiacylglycerol (DGDG) synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with monogalactosyldiacylglycerol synthase for DGDG biosynthesis. J Biol Chem 276: 31806−31812

    Article  PubMed  CAS  Google Scholar 

  • Fyfe PK, Hughes AV, Heathcote P and Jones MR (2005) Proteins, chlorophylls and lipids: x-ray analysis of a three-way relationship. Trends Plant Sci 10: 275−282

    Article  PubMed  CAS  Google Scholar 

  • Gaude N, Bréhélin C, Tischendorf G, Kessler F and Dörmann P (2007) Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J 49: 729−739

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Zhang Z, Bi Y, Yang W, Xu Y and Zhang L (2005) Decreased stability of photosystem I in dgd1 mutant of Arabidopsis thaliana. FEBS Lett 579: 3619−3624

    Article  PubMed  CAS  Google Scholar 

  • Härtel H, Lokstein H, Dörmann P, Grimm B and Benning C (1997) Changes in the composition of the photosynthetic apparatus in the galactolipid-deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiol 115: 1175−1184

    Article  PubMed  Google Scholar 

  • Härtel H, Lokstein H, Dörmann P, Trethewey RN and Benning C (1998) Photosynthetic light utilization and xanthophyll cycle activity in the galactolipid deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiol Biochem 36: 407−417

    Article  Google Scholar 

  • Härtel H, Dörmann P and Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids following phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97: 10649−10654

    Article  PubMed  Google Scholar 

  • Heemskerk JWM, Storz T, Schmidt RR and Heinz E (1990) Biosynthesis of digalactosyldiacylglycerol in plastids from 16:3 and 18:3 Plants. Plant Physiol 93: 1286−1294

    Article  PubMed  CAS  Google Scholar 

  • Helmsing PJ (1969) Purification and properties of galactolipase. Biochim Biophys Acta 189: 95−105

    Article  PubMed  Google Scholar 

  • Hendrickson L, Vlčková A, Selstam E, Huner N, Öquist G and Hurry V (2006) Cold acclimation of the Arabidopsis dgd1 mutant results in recovery from photosystem I-limited photosynthesis. FEBS Lett 580: 4959−4968

    Article  PubMed  CAS  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Wilte W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1744

    Article  PubMed  CAS  Google Scholar 

  • Hölzl G, Witt S, Kelly AA, Zähringer U, Warnecke D, Dörmann P and Heinz E (2006) Functional differences between galactolipids and glucolipids revealed in photosynthesis of higher plants. Proc Natl Acad Sci USA 103: 7512−7517

    Article  PubMed  Google Scholar 

  • Ischebeck T, Zbierzak AM, Kanwischer M and Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281: 2470−2477

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AG, Hendrickson L, Krol M, Selstam E, Öquist G, Hurry V and Huner NPA (2006) Digalactosyldiacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to photosystem I acceptor-side limitations. Plant Cell Physiol 47: 1146−1157

    Article  PubMed  CAS  Google Scholar 

  • Jones MR (2007) Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 46: 56−87

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909−917

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J and Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167: 863−874

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Maréchal E, Miège C, Block MA, Dorne A-J and Douce R (1998) Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: Siegenthaler P-A, Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Netherlands, pp. 21−52

    Google Scholar 

  • Kelly AA and Dörmann P (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate limiting conditions. J Biol Chem 277: 1166−1173

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA, Froehlich JE and Dörmann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15: 2694−2706

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Masuda T, Takamiya K and Ohta H (2006) Membrane lipid alteration during phosphate starvation is regulated by phosphate signalling and auxin/cytokinin cross-talk. Plant J 47: 238−248

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Seki K, Ohnishi M, Ito S and Fujino Y (1990) Structure of novel glyceroglycolipids in Adzuki bean (Vigna angularis) seeds. Biochem Cell Biol 68: 59−64

    PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major lightharvesting complex at 2.72 Å resolution. Nature 428: 287−292

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438: 1040−1044

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Higashi S-I and Fujimura Y (1990) Glycerolipids in various preparations of photosystem II from spinach chloroplasts. Biochim Biophys Acta 1019: 261−268

    Article  CAS  Google Scholar 

  • Nußberger S, Dörr K, Wang N and Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347−356

    Article  PubMed  Google Scholar 

  • Poirier Y, Thoma S, Somerville C and Schiefelbein J (1991) A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97: 1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50: 665−693

    Article  PubMed  CAS  Google Scholar 

  • Reifarth F, Christen G, Seeliger AG, Dörmann P, Benning C and Renger G (1997) Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylglycerol. Biochemistry 36: 11769−11776

    Article  PubMed  CAS  Google Scholar 

  • Sakurai I, Shen JR, Leng J, Ohashi S, Kobayashi M and Wada H (2006) Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J Biochem (Tokyo) 140: 201−209

    Article  CAS  Google Scholar 

  • Sastry PS and Kates M (1964) Hydrolysis of monogalactosyl and digalactosyl diglycerides by specific enzymes in runner-bean leaves. Biochemistry 3: 1280−1287

    Article  PubMed  CAS  Google Scholar 

  • Shimojima M, Ohta H, Iwamatsu A, Masuda T, Shioi Y and Takamiya K-i (1997) Cloning of the gene for monogalactosyldiacylglycerol synthase and its evolutionary origin. Proc Natl Acad Sci USA 94: 333−337

    Article  PubMed  CAS  Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M and Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24: 919−928

    Article  PubMed  CAS  Google Scholar 

  • Steffen R, Kelly AA, Huyer J, Dörmann P and Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry 44: 3134−3142

    Article  PubMed  CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L and Picot D (2003) An atypical haem in the cytochrome b6f complex. Nature 426: 413−418

    Article  PubMed  CAS  Google Scholar 

  • Ticconi CA and Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9: 548−555

    Article  PubMed  CAS  Google Scholar 

  • van Besouw A and Wintermans JF (1978) Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation. Biochim Biophys Acta 529: 44−53

    Article  PubMed  Google Scholar 

  • Versaw WK and Harrison MJ (2002) A chloroplast phosphate transporter PHT2;1 influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14: 1751−1766

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F and Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132: 1260−1271

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Fan J, Riekhof W, Froehlich JE and Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22: 2370−2379

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dörmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dörmann, P. (2010). Chapter 14 Synthesis and Function of the Galactolipid Digalactosyldiacylglycerol. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_14

Download citation

Publish with us

Policies and ethics