Skip to main content

Methuselah’s DNA: Defining Genes That Can Extend Longevity

  • Chapter
  • First Online:
The Future of Aging

Abstract

Longevity variants in model systems such as nematodes or yeast provide an express route to discovery of pathways with the potential to greatly extend longevity. C. elegans in particular has provided an especially rich harvest of mutants and RNA-interference targets that postpone death (and many other indicators of aging) by 1.5- to 2.5-fold, and for one gene (age-1) by tenfold. Studies of yeast survival, under several operational definitions, have also yielded diverse mutants that can conjointly (but not individually) confer a tenfold increase – despite fundamental differences in the nature of the “longevity” phenomenon under study in the two taxa. Given that metazoans diverged from unicellular eukaryotes such as yeast on the order of a billion years ago, it is remarkable that there is any overlap at all between pathways that prolong survival in yeast and nematodes. Parallels have emerged, however, which imply that such shared processes are fundamental to the nature of longevity, and extremely likely to be shared by mammals as well. Due however, to the far greater dependence of mammals on the sustained ability of somatic cells to replicate, we anticipate that the benefits of such changes would be limited to non-mitotic tissues. Although this may be sufficient to impart some longevity advantage to mammals, even that would necessitate efficient targeting to restrict the effects of gene silencing to non-dividing cells. In this regard it is encouraging that some non-dividing cells in mammals, such as those of the central nervous system, exert systemic longevity effects in mammals just as they do in invertebrate model organisms. Any greater benefits are likely to require a detailed understanding of the relevant downstream consequences of those mutations, to allow the selective deployment of just those downstream effectors that have no deleterious effects, with fewer or no limitations as to cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apfeld J, Kenyon C (1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402:804–809

    Article  PubMed  CAS  Google Scholar 

  • Arantes-Oliveira N, Berman JR, Kenyon C (2003) Healthy animals with extreme longevity. Science 302:611

    Article  PubMed  CAS  Google Scholar 

  • Ashrafi K, Lin SS, Manchester JK, Gordon JI (2000) Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev 14:1872–1885

    PubMed  CAS  Google Scholar 

  • Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ (2008) Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell 7:13–22

    Article  PubMed  CAS  Google Scholar 

  • Ayyadevara S, Dandapat S, Singh S, Beneš H, Zimniak L, Shmookler Reis R, Zimniak P (2005) Lifespan extension in hypomorphic daf-2 mutants of Caenorhabditis elegans is partially mediated by glutathione transferase CeGSTP2-2. Aging Cell 4:299–307

    Article  PubMed  CAS  Google Scholar 

  • Ayyadevara S, Tazearslan C, Alla R, Bharill P, Siegel E, Shmookler Reis RJ (2009) C. elegans PI3K mutants reveal novel genes underlying exceptional lifespan and stress resistance. Aging Cell 8:706–725

    Google Scholar 

  • Backer JM (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 410:1–17

    Article  PubMed  CAS  Google Scholar 

  • Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS (2001) Extending the lifespan of long-lived mice. Nature 414:412

    Article  PubMed  CAS  Google Scholar 

  • Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Bishop NA, Guarente L (2007) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835–844

    Article  PubMed  CAS  Google Scholar 

  • Blakesley VA, Scrimgeour A, Esposito D, Le Roith D (1996) Signaling via the insulin-like growth factor-I receptor: does it differ from insulin receptor signaling? Cytokine Growth Factor Rev 7:153–159

    Article  PubMed  CAS  Google Scholar 

  • Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    Article  PubMed  Google Scholar 

  • Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A (2006) Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci USA 103:7901–7905

    Article  PubMed  CAS  Google Scholar 

  • Burgering BM, Medema RH (2003) Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73:689–701

    Article  PubMed  CAS  Google Scholar 

  • Byron SA, Horwitz KB, Richer JK, Lange CA, Zhang X, Yee D (2006) Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer 95:1220–1228

    Article  PubMed  CAS  Google Scholar 

  • Cameroni E, Hulo N, Roosen J, Winderickx J, De Virgilio C (2004) The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle 3:462–468

    Article  PubMed  CAS  Google Scholar 

  • Chang JD et al. (2007) Deletion of the phosphoinositide 3-kinase p110gamma gene attenuates murine atherosclerosis. Proc Natl Acad Sci USA 104:8077–8082

    Article  PubMed  CAS  Google Scholar 

  • Clancy DJ et al. (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  PubMed  CAS  Google Scholar 

  • Curtis R, O’Connor G, DiStefano PS (2006) Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5:119–126

    Article  PubMed  CAS  Google Scholar 

  • Cypser JR, Johnson TE (1999) The spe-10 mutant has longer life and increased stress resistance. Neurobiol Aging 20:503–512

    Article  PubMed  CAS  Google Scholar 

  • D'Mello N P, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269:15451–15459

    PubMed  Google Scholar 

  • Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141:1399–1406

    PubMed  CAS  Google Scholar 

  • Dragoi AM et al. (2005) DNA-PKcs, but not TLR9, is required for activation of Akt by CpG-DNA. Embo J 24:779–789

    Article  PubMed  CAS  Google Scholar 

  • Easlon E et al. (2007) The dihydrolipoamide acetyltransferase is a novel metabolic longevity factor and is required for calorie restriction-mediated life span extension. J Biol Chem 282:6161–6171

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81

    Article  PubMed  CAS  Google Scholar 

  • Friedman DB, Johnson TE (1988) Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol 43:B102–B109

    Article  PubMed  CAS  Google Scholar 

  • Gami MS, Iser WB, Hanselman KB, Wolkow CA (2006) Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling. BMC Dev Biol 6:45

    Article  PubMed  Google Scholar 

  • Gems D et al. (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150:129–155

    PubMed  CAS  Google Scholar 

  • Greer EL, Brunet A (2008) Signaling networks in aging. J Cell Sci 121:407–412

    Article  PubMed  CAS  Google Scholar 

  • Greer EL et al. (2007a) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17:1646–1656

    Article  PubMed  CAS  Google Scholar 

  • Greer EL et al. (2007b) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282:30107–30119

    Article  PubMed  CAS  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1:119–128

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    Article  PubMed  CAS  Google Scholar 

  • Haurie V, Perrot M, Mini T, Jeno P, Sagliocco F, Boucherie H (2001) The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 276:76–85

    Article  PubMed  CAS  Google Scholar 

  • Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34:647–662

    Article  PubMed  CAS  Google Scholar 

  • Holzenberger M et al. (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  PubMed  CAS  Google Scholar 

  • Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38:947–954

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (1999) The RAS genes: a homeostatic device in Saccharomyces cerevisiae longevity. Neurobiol Aging 20:471–478

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE (1990) Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 249:908–912

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (2001) Using yeast to discover the fountain of youth. Sci Aging Knowledge Environ 2001:pe1

    Article  Google Scholar 

  • Kaibuchi K, Miyajima A, Arai K, Matsumoto K (1986) Possible involvement of RAS-encoded proteins in glucose-induced inositolphospholipid turnover in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83:8172–8176

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  PubMed  CAS  Google Scholar 

  • Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22:279–286

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Yanase S, Ishii T, Hartman PS, Matsumoto K, Ishii N (2005) The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mech Ageing Dev 126:642–647

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni RN (2002) Receptors for insulin and insulin-like growth factor-1 and insulin receptor substrate-1 mediate pathways that regulate islet function. Biochem Soc Trans 30:317–322

    Article  PubMed  CAS  Google Scholar 

  • Kurosu H et al. (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139:1567–1583

    PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145

    Article  PubMed  CAS  Google Scholar 

  • Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:943–946

    Article  PubMed  CAS  Google Scholar 

  • Lithgow GJ, Walker GA. (2002) Stress resistance as a determinant of C. elegans lifespan. Mech Ageing Dev 123:765–71

    Article  PubMed  Google Scholar 

  • Longo VD (2003) The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol 38:807–811

    Article  PubMed  CAS  Google Scholar 

  • Marden JH, Rogina B, Montooth KL, Helfand SL (2003) Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proc Natl Acad Sci USA 100:3369–3373

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Han S, Kitamura T, Accili D (2006) Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 116:2464–2472

    PubMed  CAS  Google Scholar 

  • Migliaccio E et al. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    Article  PubMed  CAS  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    Article  PubMed  CAS  Google Scholar 

  • Murakami S (2006) Stress resistance in long-lived mouse models. Exp Gerontol 41:1014–1019

    Article  PubMed  CAS  Google Scholar 

  • Murphy CT, Lee SJ, Kenyon C (2007) Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc Natl Acad Sci USA 104:19046–19050

    Article  PubMed  CAS  Google Scholar 

  • Ogg S, Ruvkun G (1998) The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 2:887–893

    Article  PubMed  CAS  Google Scholar 

  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 19:171–174

    Article  PubMed  CAS  Google Scholar 

  • Pettitt TR, Dove SK, Lubben A, Calaminus SD, Wakelam MJ (2006) Analysis of intact phosphoinositides in biological samples. J Lipid Res 47:1588–1596

    Article  PubMed  CAS  Google Scholar 

  • Piper PW (2006) Long-lived yeast as a model for ageing research. Yeast 23:215–226

    Article  PubMed  CAS  Google Scholar 

  • Remenyi A, Good MC, Lim WA (2006) Docking interactions in protein kinase and phosphatase networks. Curr Opin Struct Biol 16:676–685

    Article  PubMed  CAS  Google Scholar 

  • Riddle DL, Swanson MM, Albert PS (1981) Interacting genes in nematode dauer larva formation. Nature 290:668–671

    Article  PubMed  CAS  Google Scholar 

  • Roggo L et al. (2002) Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane. Embo J 21:1673–1683

    Article  PubMed  CAS  Google Scholar 

  • Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137–2140

    Article  PubMed  CAS  Google Scholar 

  • Rulifson IC et al. (2007) Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci USA 104:6247–6252

    Article  PubMed  CAS  Google Scholar 

  • Samuelson AV, Carr CE, Ruvkun G. (2007) Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev 21:2976–2994

    Article  PubMed  CAS  Google Scholar 

  • Sester DP et al. (2006) CpG DNA activates survival in murine macrophages through TLR9 and the phosphatidylinositol 3-kinase-Akt pathway. J Immunol 177:4473–4480

    PubMed  CAS  Google Scholar 

  • Shama S, Kirchman PA, Jiang JC, Jazwinski SM (1998) Role of RAS2 in recovery from chronic stress: effect on yeast life span. Exp Cell Res 245:368–378

    Article  PubMed  CAS  Google Scholar 

  • Shmookler Reis RJ, Kang P, Ayyadevara S (2006) Quantitative trait loci define genes and pathways underlying genetic variation in longevity. Exp Gerontol 41:1046–1054

    Article  PubMed  CAS  Google Scholar 

  • Steffen KK et al. (2008) Yeast life span extension by depletion of 60 s ribosomal subunits is mediated by Gcn4. Cell 133:292–302

    Article  PubMed  CAS  Google Scholar 

  • Taguchi A, Wartschow LM, White MF (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317:369–372

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  PubMed  CAS  Google Scholar 

  • Tazearslan C, Ayyadevara S, Bharill P, and Shmookler Reis RJ (2009) Positive feedback between transcriptional and kinase suppression in nematodes with extraordinary longevity and stress resistance. PLoS Genet 5:e1000452

    Article  PubMed  Google Scholar 

  • Tirosh O, Schwartz B, Zusman I, Kossoy G, Yahav S, Miskin R (2004) Long-lived alpha MUPA transgenic mice exhibit increased mitochondrion-mediated apoptotic capacity. Ann N Y Acad Sci 1019:439–442

    Article  PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Ruvkun G (1998) An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148:703–717

    PubMed  CAS  Google Scholar 

  • Tothova Z et al. (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339

    Article  PubMed  CAS  Google Scholar 

  • Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH (2006) p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2:e183

    Article  PubMed  Google Scholar 

  • Urban J et al. (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B et al. (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  PubMed  CAS  Google Scholar 

  • Vieira OV et al. (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 155:19–25

    Article  PubMed  CAS  Google Scholar 

  • Wang MC, Bohmann D, Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121:115–125

    Article  PubMed  CAS  Google Scholar 

  • Wanke V et al. (2008) Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol 69:277–285

    Article  PubMed  CAS  Google Scholar 

  • Wei M et al. (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4:e13

    Article  PubMed  Google Scholar 

  • Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290:147–150

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S et al. (2006) Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. Embo J 25:3515–3523

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Shmookler Reis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shmookler Reis, R.J., McEwen, J.E. (2010). Methuselah’s DNA: Defining Genes That Can Extend Longevity. In: Fahy, G.M., West, M.D., Coles, L.S., Harris, S.B. (eds) The Future of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3999-6_20

Download citation

Publish with us

Policies and ethics