Skip to main content

Integrating Crop and Landscape Management into New Crop Protection Strategies to Enhance Biological Control of Oilseed Rape Insect Pests

  • Chapter
  • First Online:
Biocontrol-Based Integrated Management of Oilseed Rape Pests

Abstract

The development of sustainable cropping systems is a major challenge for agronomists and crop scientists in many regions of the world. The prophylactic uses of broad spectrum insecticides are actually the main solution for farmers to control insect pests. Therefore, there is a growing need to develop innovative crop protection strategies through an integrated approach which aims at favouring natural enemies and enhancing biological control in agroecosystems. The development of such strategies requires a thorough understanding of agroecosystem functioning. In this chapter, we present the effects of different elements, from the field scale to the landscape scale that are known to enhance biological control in agroecosystems and limit pest damage with particular reference to oilseed rape. Linking integrated pest management and landscape ecology brings a regional perspective to the management of pest populations. Available techniques are often added together rather than combined in an integrated way and are rarely evaluated through environmental and economical criteria. Therefore, we present a methodological framework to design and assess sustainable cropping systems, with a particular emphasis on complementariness between models, systemic trials and more analytical approaches. Implementation of sustainable cropping systems implies the development of new integrated pest management strategies and thereby an increased participation of the different stakeholders from farmers to policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agr Ecosyst Environ 74: 19–31.

    Article  Google Scholar 

  • Altieri MA, Liebman M (1986) Insect, weed and plant disease management in multiple cropping systems. In: Francis CA (ed.) Multiple cropping systems. MacMillan, New York.

    Google Scholar 

  • Altieri MA, Nicholls CI (2004) An agroecological basis for biological control through conservation. California conf on biological control IV, Berkeley, California, USA, 13–15 July 2004, pp 28–39.

    Google Scholar 

  • Altieri MA, Schmidt LL (1986) The dynamics of colonizing arthropod communities at the interface of abandoned, organic and commercial apple orchards and adjacent woodland habitats. Agr Ecosyst Environ 16: 29–43.

    Article  Google Scholar 

  • Andow DA (1991a) Vegetational diversity and arthropod population response. Annu Rev Entomol 36: 561–586.

    Article  Google Scholar 

  • Andow DA (1991b) Yield loss to arthropods in vegetationally diverse agroecosystems. Environ Entomol 20: 1228–1235.

    Google Scholar 

  • Aquilino KM, Cardinale BJ, Ives AR (2005) Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: An empirical study of a model tritrophic system. Oikos 108: 275–282.

    Article  Google Scholar 

  • Aubertot JN, Pinochet X, Dore T (2004) The effects of sowing date and nitrogen availability during vegetative stages on Leptosphaeria maculans development on winter oilseed rape. Crop Prot 23: 635–645.

    Article  Google Scholar 

  • Baggen LR, Gurr GM, Meats A (1999) Flowers in tri-trophic systems: Mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomol Exp Appl 91: 155–161.

    Article  Google Scholar 

  • Bajwa WI, Kogan M (2004) Cultural practices: Springboard to IPM. In: Koul O, Dhaliwal GS, Cuperus GW (eds.) Integrated pest management: Potential, constraints and challenges. CABI Publishing, UK.

    Google Scholar 

  • Barari H, Cook SM, Clark SJ, Williams IH (2005) Effect of a turnip rape (Brassica rapa) trap crop on stem-mining pests and their parasitoids in winter oilseed rape (Brassica napus). BioControl 50: 69–86.

    Article  Google Scholar 

  • Bartlet E, Blight MM, Pickett JA, Smart LE, Turner G, Woodcock CM (2004) Orientation and feeding responses of the pollen beetle, Meligethes aeneus, to candytuft, Iberis amara. J Chem Ecol 30: 913–925.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. P Roy Soc Lond 273: 1715–1727.

    Article  CAS  Google Scholar 

  • Bianchi FJJA, Honek A, Werf Wvander (2007) Changes in agricultural land use can explain population decline in a ladybeetle species in the Czech Republic: Evidence from a process-based spatially explicit model. Landscape Ecol 22: 1541–1554.

    Article  Google Scholar 

  • Bjözrkman M, Hamback PA, Ramert B (2007) Neighbouring monocultures enhance the effect of intercropping on the turnip root fly (Delia floralis). Entomol Exp Appl 124: 319–326.

    Article  Google Scholar 

  • Bohan DA, Glen DM, Wiltshire CW, Hughes L (2000) Parametric intensity and the spatial arrangement of the terrestrial mollusc herbivores Deroceras reticulatum and Arion intermedius. J Anim Ecol 69: 1031–1046.

    Article  Google Scholar 

  • Borg A, Ekbom B (1996) Characteristics of oviposition behaviour of the pollen beetle, Meligethes aeneus on four different host plants. Entomol Exp Appl 81: 277–284.

    Article  Google Scholar 

  • Brevault T, Bikay S, Maldes JM, Naudin K (2007) Impact of a no-till with mulch soil management strategy on soil macrofauna communities in a cotton cropping system. Soil Till Res 97: 140–149.

    Article  Google Scholar 

  • Broad ST, Schellhorn NA, Lisson SN, Mendham NJ, Corkrey R (2008) Host location and parasitism of Brevicoryne brassicae in diversified broccoli cropping systems. Entomol Exp Appl 129: 166–171.

    Article  Google Scholar 

  • Brunin B, Lacoste L (1970) Recherche sur la maladie du colza due a Leptosphaeria maculans. Ann Phytopathol 2: 477.

    Google Scholar 

  • Brust GE (1994) Natural enemies in straw-mulch reduce Colorado potato beetle populations and damage in potato. Biol Control 4: 163–169.

    Article  Google Scholar 

  • Büchi R (1995) Combination of trap plants (Brassica rapa var. silvestris) and insecticide use to control rape pests. IOBC/wprs Bull 18(4): 102–121.

    Google Scholar 

  • Büchi R (2002) Mortality of pollen beetle (Meligethes spp.) larvae due to predators and parasitoids in rape fields and the effect of conservation strips. Agr Ecosyst Environ 90: 255–263.

    Article  Google Scholar 

  • Büchs W (2003) Impact of on-farm landscape structures and farming systems on predators. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford, UK.

    Google Scholar 

  • Büchs W, Harenberg A, Prescher S, Weber G, Hattwig F (1999) Entwicklung von Evertebratenzönosen bei verschiedenen Formen der Flächenstillegung und Extensivierung. Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft Berlin-Dahlem 368: 9–38.

    Google Scholar 

  • Büchs W, Harenberg A, Zimmermann J (1997) The invertebrate ecology of farmland as a mirror of the intensity of the impact of man? – An approach to interpreting results of field experiments carried out in different crop management intensities of a sugar beet and an oil seed rape rotation including set-aside. Biol Agr Hort 15: 83–107.

    Article  Google Scholar 

  • Büchs W, Heimbach U, Czarnecki E (1991) Effects of different rape seed dressings on carabid beetles: Laboratory and semifield tests. Gesunde Pflanzen 43: 299–306.

    Google Scholar 

  • Büchs W, Katzur K (2004) Cultivation techniques as means to control pests in organic oilseed rape production. IOBC/wprs Bull 27(10): 225–236.

    Google Scholar 

  • Burn AJ (1988) Assessment of the impact of pesticides on invertebrate predation in cereal crops. Aspects Appl Biol 17: 279–288.

    Google Scholar 

  • Butts RA, Floate KD, David M, Blackshaw RE, Burnett PA (2003) Influence of intercropping canola or pea with barley on assemblages of ground beetles (Coleoptera: Carabidae). Environ Entomol 32: 535–541.

    Article  Google Scholar 

  • Carcamo HA, Dunn R, Dosdall LM, Olfert O (2007) Managing cabbage seedpod weevil in canola using a trap crop – a commercial field scale study in western Canada. Crop Prot 26: 1325–1334.

    Article  CAS  Google Scholar 

  • Chabert A, Gandrey J (2005) Impact of some insecticides on Carabidae and consequences for slug populations. IOBC/wprs Bull 28(6): 111–113.

    Google Scholar 

  • Chiverton PA (1999) Buffer zones of different floral composition – effects on the beneficial arthropod fauna. Aspects Appl Biol 54: 307–314.

    Google Scholar 

  • Colbach N, Clermont-Dauphin C, Meynard JM (2001a) GENESYS: A model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers. I. Temporal evolution of a population of rapeseed volunteers in a field. Agr Ecosyst Environ 83: 235–253.

    Article  Google Scholar 

  • Colbach N, Clermont-Dauphin C, Meynard JM (2001b) GENESYS: A model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers. II. Genetic exchanges among volunteer and cropped populations in a small region. Agr Ecosyst Environ 83: 255–270.

    Article  Google Scholar 

  • Coll M, Bottrell DG (1995) Predator-prey association in mono- and dicultures: Effect of maize and bean vegetation. Agr Ecosyst Environ 54: 115–125.

    Article  Google Scholar 

  • Collins KL, Boatman ND, Wilcox A, Holland JM, Chaney K (2002) Influence of beetle banks on cereal aphid predation in winter wheat. Agr Ecosyst Environ 93: 337–350.

    Article  Google Scholar 

  • Cook SM, Bartlet E, Murray DA, Williams IH (2002) The role of pollen odour in the attraction of pollen beetles to oilseed rape flowers. Entomol Exp Appl 104: 43–50.

    Article  CAS  Google Scholar 

  • Cook SM, Jonsson M, Skellern MP, Murray DA, Anderson P, Powell W (2007) Responses of Phradis parasitoids to volatiles of lavender, Lavandula angustifolia – a possible repellent for their host, Meligethes aeneus. BioControl 52: 591–598.

    Article  CAS  Google Scholar 

  • Cook SM, Smart LE, Martin JL, Murray DA, Watts NP, Williams IH (2006) Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus). Entomol Exp Appl 119: 221–229.

    Article  Google Scholar 

  • Costamagna AC, Landis DA (2006) Predators exert top-down control of soybean aphid across a gradient of agricultural management systems. Ecol Appl 16: 1619–1628.

    Article  PubMed  Google Scholar 

  • Cumming GS, Spiesman BJ (2006) Regional problems need integrated solutions: Pest management and conservation biology in agroecosystems. Biol Conserv 131: 533–543.

    Article  Google Scholar 

  • David C, Jeuffroy MH, Henning J, Meynard JM (2005) Yield variation in organic winter wheat: A diagnostic study in the Southeast of France. Agron Sustain Dev 25: 213–223.

    Article  Google Scholar 

  • Dennis P, Fry GLA (1992) Field margins: Can they enhance natural enemy population densities and general arthropod diversity on farmland? Agr Ecosyst Environ 40: 95–115.

    Article  Google Scholar 

  • Denys C, Tscharntke T (2002) Plant-insect communities and predator-prey ratios in field margin strips, adjacent crop fields, and fallows. Oecologia 130: 315–324.

    Google Scholar 

  • Dhaliwal GS, Opender K, Ramesh A (2004) Integrated pest management: Retrospect and prospect. In: Koul O, Dhaliwal GS, Cuperus GW (eds.) Integrated pest management: Potential, constraints and challenges. CABI Publishing, UK.

    Google Scholar 

  • Doré T, Clermont-Dauphin C, Crozat Y, David C, Jeuffroy MH, Loyce C, Makowski D, Malezieux E, Meynard JM, Valantin-Morison M (2008) Methodological progress in on-farm regional agronomic diagnosis, a review. Agron Sustain Dev 28: 151–161.

    Article  Google Scholar 

  • Doré T, Sebillotte M, Meynard JM (1997) A diagnostic method for assessing regional variations in crop yield. Agr Sys 54: 169–188.

    Article  Google Scholar 

  • Dosdall LM, Herbut MJ, Cowle NT (1994) Susceptibilities of species and cultivars of canola and mustard to infestation by root maggots (Delia spp.) (Diptera: Anthomyiidae). Can Entomol 126: 251–260.

    Article  Google Scholar 

  • Dosdall LM, Herbut MJ, Cowle NT, Micklich TM (1996) The effect of seeding date and plant density on infestations of root maggots, Delia spp. (Diptera: Anthomyiidae), in canola. Canad J Plant Sci 76: 169–177.

    Article  Google Scholar 

  • Dosdall LM, Stevenson FC (2005) Managing flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola with seeding date, plant density, and seed treatment. Agron J 97: 1570–1578.

    Article  Google Scholar 

  • Duffield S (1991) Does the size of area you spray with insecticides influence the extent of side-effects on invertebrate populations? Game Conservancy Rev 22: 64–65.

    Google Scholar 

  • Dunning JB, Danielson JB, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65: 169–175.

    Article  Google Scholar 

  • El Titi A, Boller EF, Gendrier JP (ed.)(1993) Integrated production – Principles and Technical Guidelines. IOBC/wprs Bull 16(1): 1–97.

    Google Scholar 

  • Elliot NC, Kieckhefer RW, Lee J, French BW (1998) Influence of within-field and landscape factors on aphid predator populations in wheat. Landscape Ecol 14: 239–252.

    Article  Google Scholar 

  • Ellis PR, Farrell JA (1995) Resistance to cabbage aphid (Brevicoryne brassicae) in six brassica accessions in New Zealand. NZ J Crop Hort Sci 23: 25–29.

    Article  Google Scholar 

  • Evans KA, Allen Williams LJ (1989) The response of the cabbage seed weevil (Ceutorhynchus assimilis Payk.) and the brassica pod midge (Dasineura brassicae Winn.) to flower colour and volatiles of oilseed rape. Aspects Appl Biol 23: 347–353.

    Google Scholar 

  • Evans KA, Allen-Williams LJ (1998) Response of cabbage seed weevil (Ceutorhynchus assimilis) to baits of extracted and synthetic host-plant odor. J Chem Ecol 24: 2101–2114.

    Article  CAS  Google Scholar 

  • Ewald JA, Aebischer NJ (2000) Trends in pesticide use and efficacy during 26 years of changing agriculture in southern England. Environ Monit Assess 64: 493–529.

    Article  CAS  Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8: 50–59.

    Article  Google Scholar 

  • Feeny P, Paauwe KL, Demong JN (1970) Flea beetle and mustard oils: Host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleopera: Chrysomelidae). Ann Entomol Soc Am 63: 832–841.

    Google Scholar 

  • Ferron P, Deguine JP (2005) Crop protection, biological control, habitat management and integrated farming, a review. Agron Sustain Dev 25: 17–24.

    Article  Google Scholar 

  • Finch S (1978) Volatile plant chemicals and their effect on host plant finding by the cabbage root fly (Delia brassicae). Entomol Exp Appl 24: 350–359.

    Article  CAS  Google Scholar 

  • Finch S, Collier RH (2000) Host-plant selection by insects – a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol Exp Appl 96: 91–102.

    Article  Google Scholar 

  • Finch S, Collier RH (2003) Host-plant selection by insects – the ‘missing link’. IOBC/wprs Bull 26(3): 103–108.

    Google Scholar 

  • Flint ML, Gouveia P (2001) IPM in practice: Principles and methods of integrated pest management. University of California Press, Oakland, CA.

    Google Scholar 

  • Francis CA, Clegg MD (1990) Crop rotations in sustainable production systems. In: Edwards CA, Lal R, Madden P, Miller RH, House G (eds.) Sustainable agricultural systems. Soil and Water Conservation Society, Ankeny, IA.

    Google Scholar 

  • Frank T (1996) Species diversity and activity densities of epigaeic and flower visiting arthropods in sown weed strips and adjacent fields. IOBC/wprs Bull 19(3): 101–105.

    Google Scholar 

  • Frank T, Nentwig W (1995) Ground dwelling spiders (Araneae) in sown weed strips and adjacent fields. Acta Oecologica 16(2): 179–193.

    Google Scholar 

  • Free JB, Williams IH (1978) The response of pollen beetle, Meligethes aeneus, and the seed weevil, Ceutorhynchus assimilis, to oilseed rape, Brassica napus, and other plants. J Appl Ecol 15: 761–774.

    Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: A dynamic interaction. New Phytologist 156: 145–169.

    Article  CAS  Google Scholar 

  • Geiger F, Bianchi FJJA, Wäckers FL (2005) Winter ecology of the cabbage aphid Brevicoryne brassicae (L.) (Homo., Aphididae) and its parasitoid Diaeretiella rapae (McIntosh) (Hym., Braconidae: Aphidiidae). J Appl Entomol 129: 563–566.

    Article  Google Scholar 

  • Gordon PL, McEwen FL (1984) Insecticide-stimulated reproduction of Myzus persicae, the green peach aphid (Homoptera: Aphididae). Can Entomol 116: 783–784.

    Article  Google Scholar 

  • Gu H, Fitt GP, Baker GH (2007) Invertebrate pests of canola and their management in Australia: A review. Aust J Entomol 46: 231–243.

    Article  Google Scholar 

  • Gurr GM, Wratten SD (eds) (2000) Biological control: Measures of success. Kluwer Academic Press, Dordrecht.

    Google Scholar 

  • Halley JM, Thomas CFG, Jepson PC (1996) A model for the spatial dynamics of linyphiid spiders in farmland. J Appl Ecol 33: 471–492.

    Article  Google Scholar 

  • Harmon JP, Hladilek EE, Hinton JL, Stodola TJ, Andow DA (2003) Herbivore response to vegetational diversity: Spatial interaction of resources and natural enemies. Population Ecology 45: 75–81.

    Article  Google Scholar 

  • Hausammann A (1996) Strip-management in rape crop: Is winter rape endangered by negative impacts of sown weed strips? J Appl Entomol 120: 505–512.

    Article  Google Scholar 

  • Herzog DC, Funderburk JE (1985) Host plant resistance and cultural control interactions with biological control. In: Hoy MA, Herzog DC (eds.) Biological control in agricultural IPM systems. Academic Press, New York, USA.

    Google Scholar 

  • Hickman JM, Wratten SD (1996) Use of Phacelia tanacetifolia strips to enhance biological control of aphids by hoverfly larvae in cereal fields. J Econ Entomol 89: 832–840.

    Google Scholar 

  • Hokkanen HMT (1989) Biological and agrotechnical control of the rape blossom beetle Meligethes aeneus (Coleoptera, Nitidulidae). Acta Entomol Fenn 53: 25–29.

    Google Scholar 

  • Hokkanen HMT (2008) Biological control methods of pest insects in oilseed rape. EPPO Bull 38(1): 104–109.

    Article  Google Scholar 

  • Hokkanen HMT, Husberg GB, Söderblom M (1988) Natural enemy conservation for the integrated control of the rape blossom beetle Meligethes aeneus F. Ann Agr Fenn 27: 281–294.

    Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agr Ecosyst Environ 103: 1–25.

    Article  Google Scholar 

  • Holland JM, Drysdale A, Hewitt MV, Turley D (1996) The LINK IFS project – the effect of crop rotations and cropping systems on Carabidae. Aspects Appl Biol 47: 119–126.

    Google Scholar 

  • Holland JM, Oaten H, Southway S, Moreby S (2008) The effectiveness of field margin enhancement for cereal aphid control by different natural enemy guilds. Biol Control 47: 71–76.

    Article  Google Scholar 

  • Holland JM, Thomas CFG, Birkett T, Southway S, Oaten H (2005) Farm-scale spatiotemporal dynamics of predatory beetles in arable crops. J Appl Ecol 42: 1140–1152.

    Article  Google Scholar 

  • Hooks CRR, Johnson MW (2003) Impact of agricultural diversification on the insect community of cruciferous crops. Crop Prot 22: 223–238.

    Article  Google Scholar 

  • Hopkins RJ, Ekbom B (1996) Low oviposition stimuli reduce egg production in the pollen beetle Meligethes aeneus. Physiol Entomol 21: 118–122.

    Article  Google Scholar 

  • Hopkins RJ, Ekbom B (1999) The pollen beetle, Meligethes aeneus, changes egg production rate to match host quality. Oecologia 120: 274–278.

    Google Scholar 

  • Husberg GB, Granlund H, Hokkanen H (1985) Control of rape beetles with the aid of trap crops. Vaxtskyddsnotiser 49: 98–101.

    Google Scholar 

  • Häni FJ, Boller EF, Keller S (1998) Natural regulation at the farm level. In: Pickett CH, Bugg RL (eds.) Enhancing biological control, habitat management to promote natural enemies of agricultural pests. University of California Press, USA.

    Google Scholar 

  • Keller S, Häni F (2000) Ansprüche von Nützlingen und Schadlingen an den Lebensraum. In: Nentwig W (ed.) Streifenformige okologische Ausgleichsflächen in der Kulturlandschaft: Ackerkrautstreifen, Buntbrache, Feldrander. Verlag Agrarokologie, Bern.

    Google Scholar 

  • Kendall DA, Chinn NE, Smith BD, Tidboald C, Winstone L, Western NM (1991) Effects of straw disposal and tillage on spread of barley yellow dwarf virus in winter barley. Ann Appl Biol 119: 359–364.

    Article  Google Scholar 

  • Khan ZR, Ampong-Nyarko K, Chiliswa P, Hassanali A, Kimani S, Lwande W, Overholt WA, Pickett JA, Smart LE, Wadhams LJ, Woodcock CM (1997) Intercropping increases parasitism of pests. Nature 388: 631–632.

    Article  CAS  Google Scholar 

  • Khan ZR, Pickett JA, Wadhams LJ, Hassanali A, Midega CAO (2006) Combined control of Striga hermonthica and stemborers by maize-Desmodium spp. intercrops. Crop Prot 25: 989–995.

    Article  Google Scholar 

  • Kirkegaard J, Christen O, Krupinsky J, Layzell D (2008) Break crop benefits in temperate wheat production. Field Crops Res 107: 185–195.

    Article  Google Scholar 

  • Klinger K (1987) Effects of margin strips along a winter wheat field on the predatory arthropod fauna and cereal aphid infestation. J Appl Entomol 104: 47–58.

    Article  Google Scholar 

  • Kogan M (1988) Integrated pest management theory and practice. Entomol Exp Appl 49: 59–70.

    Article  Google Scholar 

  • Kogan M (ed.) (1994) Areawide management of the codling moth: Implementation of a comprehensive IPM program for pome fruit crops in the Western U.S. Integrated Plant Protection Center, Corvallis, Oregon.

    Google Scholar 

  • Kogan M (1998) Integrated pest management: Historical perspectives and contemporary developments. Annu Rev Entomol 43: 243–270.

    Article  PubMed  CAS  Google Scholar 

  • Koss AM, Jensen AS, Schreiber A, Pike KS, Snyder WE (2005) Comparison of predator and pest communities in Washington potato fields treated with broad-spectrum, selective, or organic insecticides. Environ Entomol 34: 87–95.

    Article  CAS  Google Scholar 

  • Kostal V (1993) Physical and chemical factors influencing landing and oviposition by the cabbage root fly on host-plant models. Entomol Exp Appl 66: 109–118.

    Article  Google Scholar 

  • Kromp B (1999) Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agr Ecosyst Environ 74: 187–228.

    Article  Google Scholar 

  • Kropff MJ, Teng PS, Rabbinge R (1995) The challenge of linking pest and crop models. Agricultural Systems 49: 413–434.

    Article  Google Scholar 

  • Kruess A (2003) Effects of landscape structure and habitat type on a plant-herbivore-parasitoid community. Ecography 26: 283–290.

    Article  Google Scholar 

  • Krupinsky JM, Bailey KL, McMullen MP, Gossen BD, Turkington TK (2002) Managing plant disease risk in diversified cropping systems. Agron J 94: 198–209.

    Article  Google Scholar 

  • Lagerlof J, Wallin H (1993) The abundance of arthropods along two field margins with different types of vegetation composition: An experimental study. Agr Ecosyst Environ 43: 141–154.

    Article  Google Scholar 

  • Lamb RJ, Palaniswamy P, Pivnick KA, Smith MAH (1993) A selection of oilseed rape, Brassica rapa L., with resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Can Entomol 125: 703–713.

    Article  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45: 175–201.

    Article  PubMed  CAS  Google Scholar 

  • Landolt PJ, Hofstetter RW, Biddick LL (1999) Plant essential oils as arrestants and repellents for neonate larvae of the codling moth (Lepidoptera: Tortricidae). Environ Entomol 28: 954–960.

    CAS  Google Scholar 

  • Lançon J, Wery J, Rapidel B, Angokaye M, Gerardeaux E, Gaborel C, Ballo D, Fadegnon B (2007) An improved methodology for integrated crop management systems. Agronomy for Sustainable Development 27: 101–110.

    Article  Google Scholar 

  • Lerin J (1988) Yield losses associated with 2 successive pests (Ceuthorrhynchus napi Gyll. and Meligethes aeneus F.) on winter rape (cultivar Bienvenu). Agronomie 8: 251–256.

    Article  Google Scholar 

  • Lô-Pelzer E (2008) Modelling the effects of cropping systems and their spatial distribution on phoma stem canker on Winter Oilseed Rape and the adaptation of fungal pathogen. PhD Thesis, AgroParisTech.

    Google Scholar 

  • Lővei GL, McDougall D, Bramley G, Hodgson DJ, Wratten SD (1992) Floral resources for natural enemies: The effect of Phacelia tanacetifolia (Hydrophyllaceae) on within-field distribution of hoverflies (Diptera: Syrphidae). Proc 45th NZ Plant Prot Conf, Wellington, NZ, 11–13 August 1992, pp 60–61.

    Google Scholar 

  • Mabbett T (1991) Straw incorporation trials reveal arable slug damage will increase. Agr Int 43: 304–306.

    Google Scholar 

  • Mair J, Port GR (2002) The influence of mucus production by the slug, Deroceras reticulatum, on predation by Pterostichus madidus and Nebria brevicollis (Coleoptera: Carabidae). Biocontrol Sci Techn 12: 325–335.

    Article  Google Scholar 

  • Marino PC, Landis DA (1996) Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecol Appl 6: 276–284.

    Article  Google Scholar 

  • Markus J, Podlaska J, Dmoch J, Pietkiewicz S, Oboda T, Lewandowski M (1996) Compensation of the damage caused by pollen beetle (Meligethes aeneus) on winter oilseed rape under different plant density and fertilisation III. Chemical composition of winter oilseed rape cv. Leo. Rosliny Oleiste 17: 325–330.

    Google Scholar 

  • Marshall EJP (2004) Agricultural landscapes: Field margin habitats and their interaction with crop production. J Crop Improvement 12: 365–404.

    Article  Google Scholar 

  • Mauchline AL, Osborne JL, Martin AP, Poppy GM, Powell W (2005) The effects of non-host plant essential oil volatiles on the behaviour of the pollen beetle Meligethes aeneus. Entomol Exp Appl 114: 181–188.

    Article  CAS  Google Scholar 

  • McKirdy SJ, Jones RAC (1997) Effect of sowing time on barley yellow dwarf virus infection in wheat: Virus incidence and grain yield losses. Australian J Agr Res 48: 199–206.

    Article  Google Scholar 

  • Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106: 259–271.

    Article  Google Scholar 

  • Meynard JM, Doré T, Habib R (2001) Evaluation and conception of cropping systems for a sustainable agriculture. Comptes Rendus Académie d’Agriculture de France 87: 223–236.

    Google Scholar 

  • Milford GFJ, Evans EJ (1991) Factors causing variation in glucosinolates in oilseed rape. Outlook Agr 20: 31–37.

    Google Scholar 

  • Nentwig W (1988) Augmentation of beneficial arthropods by strip-management. 1. Succession of predacious arthropods and long-term change in the ratio of phytophagous and predacious arthropods in a meadow. Oecologia 76: 597–606.

    Google Scholar 

  • Nentwig W, Frank T, Lethmayer C (1998) Sown weed strips: Artificial ecological compensation areas as an important tool in conservation biological control. In: Barbosa P (ed.) Conservation biological control. Academic Press, San Diego, USA.

    Google Scholar 

  • Nickel JL (1973) Pest situation in changing agricultural systems – a review. Bull Entomol Soc Amer 19: 136–142.

    Google Scholar 

  • Nilsson C (1985) Impact of ploughing on emergence of pollen beetle parasitoids after hibernation. Z Angew Entomol 100: 302–308.

    Article  Google Scholar 

  • Nilsson C (1994) Pollen beetles (Meligethes spp.) in oil seed rape crops (Brassica napus L) biological interactions and crop losses. Department of Plant Protection Sciences, SLU, Dissertations 1, 39 pp.

    Google Scholar 

  • Nitzsche O, Ulber B (1998) Influence of different tillage treatments following the harvest of oilseed-rape on the mortality of pollen beetle (Meligethes spp.) parasitoids. Z Pflanzenkr Pflschutz 105: 417–421.

    Google Scholar 

  • Östman Ö, Ekbom B, Bengtsson J (2001) Landscape heterogeneity and farming practice influence biological control. Basic Appl Ecol 2: 365–371.

    Article  Google Scholar 

  • Palaniswamy P (1996) Host plant resistance to insect pests of cruciferous crops with special reference to flea beetles feeding on canola – a review. Acta Hort 407: 469–481.

    Google Scholar 

  • de la Peña NM, Butet A, Delettre Y, Morant P, Burel F (2003) Landscape context and carabid beetles (Coleoptera: Carabidae) communities of hedgerows in western France. Agr Ecosyst Environ 94: 59–72.

    Article  Google Scholar 

  • Perrin RM (1977) Pest management in multiple cropping systems. Agron Ecosys 3: 93–118.

    Article  Google Scholar 

  • Petanidou T (2003) Introducing plants for bee-keeping at any cost? – assessment of Phacelia tanacetifolia as nectar source plant under xeric Mediterranean conditions. Plant Systematics and Evolution 238: 155–168.

    Google Scholar 

  • Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agr Ecosyst Environ 78: 215–222.

    Article  Google Scholar 

  • Pfiffner L, Luka H, Schlatter C, Juen A, Traugott M (2009) Impact of wildflower strips on biological control of cabbage lepidopterans. Agr Ecosyst Environ 129: 310–314.

    Article  Google Scholar 

  • Pfiffner L, Wyss E (2004) Use of sown wildflower strips to enhance natural enemies of agricultural pests. In: Gurr GM, Wratten SD, Altieri MA (eds.) Ecological engineering for pest management. Advances in habitat manipulation for arthropods. CSIRO Publishing, Melbourne, Australia.

    Google Scholar 

  • Pickett CH, Bugg RL (1998) Enhancing biological control: Habitat management to promote natural enemies of agricultural pests. University of California Press, Berkeley, USA.

    Google Scholar 

  • Pickett CH, Roltsch WJ, Corbett A, Daane KM (2000) Habitat management for enhancing biological control: Benefits and pitfalls. California Conf on Biological Control II, Riverside, California, USA, 11–12 July, 2000, pp 81–85.

    Google Scholar 

  • Pimentel D (1961) Species diversity and insect population outbreaks. Ann Entomol Soc Am 54: 76–86.

    Google Scholar 

  • Plantegenest M, Le May C, Fabre F (2007) Landscape epidemiology of plant diseases. J Roy Soc Lond 4: 963–972.

    Google Scholar 

  • Platt JO, Caldwell JS, Kok LT (1999) Effect of buckwheat as a flowering border on populations of cucumber beetles and their natural enemies in cucumber and squash. Crop Prot 18: 305–313.

    Article  Google Scholar 

  • Podlaska J, Markus J, Dmoch J, Loboda T (1996) Compensation of the damage caused by pollen beetle (Meligethes aeneus) on winter oilseed rape under different plant density and fertilisation. I – Some morphological characters. Rosliny Oleiste 17: 325–330.

    Google Scholar 

  • Pontin DR, Wade MR, Kehrli P, Wratten SD (2006) Attractiveness of single and multiple species flower patches to beneficial insects in agroecosystems. Ann Appl Biol 148: 39–47.

    Article  Google Scholar 

  • Potting RPJ, Perry JN, Powell W (2005) Insect behavioural ecology and other factors affecting the control efficacy of agro-ecosystem diversification strategies. Ecol Model 182: 199–216.

    Article  Google Scholar 

  • Pullaro TC, Marino PC, Jackson DM, Harrison HF, Keinath AP (2006) Effects of killed cover crop mulch on weeds, weed seeds, and herbivores. Agr Ecosyst Environ 115: 97–104.

    Article  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132: 652–661.

    Article  Google Scholar 

  • Pulliam HR, Danielson JB (1991) Sources, sinks, and habitat selection: A landscape perspective on population dynamics. Am Nat 137: 50–66.

    Article  Google Scholar 

  • Rahim A, Hashmi A, Khan NA (1991) Effects of temperature and relative humidity on longevity and development of Ooencyrtus papilionis Ashmead (Hymenoptera: Eulophidae), a parasite of the sugarcane pest, Pyrilla perpusilla Walker (Homoptera: Cicadellidae). Environ Entomol 20: 774–775.

    Google Scholar 

  • Rebek EJ, Sadof CS, Hanks LM (2006) Influence of floral resource plants on control of an armored scale pest by the parasitoid Encarsia citrina (Craw.) (Hymenoptera: Aphelinidae). Biol Control 37: 320–328.

    Article  Google Scholar 

  • Riechert SE, Lockley T (1984) Spiders as biological control agents. Annu Rev Entomol 29: 299 –320.

    Article  Google Scholar 

  • Risch SJ (1983) Intercropping as cultural pest control: Prospects and limitations. Environ Manage 7: 9–14.

    Article  Google Scholar 

  • Rojas JC, Wyatt TD (1999) Role of visual cues and interaction with host odour during the host-finding behaviour of the cabbage moth. Entomol Exp Appl 91: 59–65.

    Article  Google Scholar 

  • Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386: 710–713.

    Article  CAS  Google Scholar 

  • Root RB (1973) Organization of a Plant-Arthropod Association in Simple and Diverse Habitats: The Fauna of Collards (Brassica oleracea). Ecol Monog 43: 95.

    Article  Google Scholar 

  • Roschewitz I, Hücker M, Tscharntke T, Thies C (2005) The influence of landscape context and farming practices on parasitism of cereal aphids. Agr Ecosyst Environ 108: 218–227.

    Article  Google Scholar 

  • Royer TA, Mulder PG, Cuperus GW (1999) Renaming (redefining) integrated pest management: Fumble, pass, or play? Am Entomol 45: 136–139.

    Google Scholar 

  • Rusch A, Valantin-Morison M (2010) Effect of nitrogen fertilization, cultivar and species on attractiveness and nuisibility of two major pests of winter oilseed rape (Brassica napus L.): Pollen beetle (Meligethes aeneus F.) and stem weevil (Ceutorhynchus napi Gyl.). IOBC/wprs Bull (in press).

    Google Scholar 

  • Russell EP (1989) Enemies hypothesis: A review of the effect of vegetational diversity on predatory insects and parasitoids. Environ Entomol 18: 590–599.

    Google Scholar 

  • Sarthou JP, Ouin A, Arrignon F, Barreau G, Bouyjou B (2005) Landscape parameters explain the distribution and abundance of Episyrphus balteatus (Diptera: Syrphidae). European J Entomol 102: 539–545.

    Google Scholar 

  • Schellhorn NA, Sork VL (1997) The impact of weed diversity on insect population dynamics and crop yield in collards, Brassica oleracea (Brassicaceae). Oecologia 111: 233–240.

    Article  Google Scholar 

  • Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42: 281–287.

    Article  Google Scholar 

  • Schmidt MH, Thewes U, Thies C, Tscharntke T (2004) Aphid suppression by natural enemies in mulched cereals. Entomol Exp Appl 113: 87–93.

    Article  Google Scholar 

  • Sharma HC, Ortiz R (2002) Host plant resistance to insects: An eco-friendly approach for pest management and environment conservation. J Environ Biol 23: 111–135.

    PubMed  CAS  Google Scholar 

  • Smart LE, Blight MM (2000) Response of the pollen beetle, Meligethes aeneus, to traps baited with volatiles from oilseed rape, Brassica napus. J Chem Ecol 26: 1051–1064.

    Article  CAS  Google Scholar 

  • Sotherton NW (1984) The distribution and abundance of predatory arthropods overwintering on farmland. Ann Appl Biol 105: 423–429.

    Article  Google Scholar 

  • Souchere V, Cerdan O, Dubreuil N, le Bissonnais Y, King C (2005) Modelling the impact of agri-environmental scenarios on runoff in a cultivated catchment (Normandy, France). Catena 61: 229–240.

    Article  Google Scholar 

  • Stark JD, Banks JE, Acheampong S (2004) Estimating susceptibility of biological control agents to pesticides: Influence of life history strategies and population structure. Biol Control 29: 392–398.

    Article  Google Scholar 

  • Stephens MJ, France CM, Wratten SD, Frampton C (1998) Enhancing biological control of leafrollers (Lepidoptera: Tortricidae) by sowing buckwheat (Fagopyrum esculentum) in an orchard. Biocontrol Sci Techn 8: 547–558.

    Article  Google Scholar 

  • Sterk B, Ittersum MKvan, Leeuwis C, Wijnands FG (2007) Prototyping and farm system modelling – partners on the road towards more sustainable farm systems? European J Agron 26: 401–409.

    Article  Google Scholar 

  • Sutherland JP, Sullivan MS, Poppy GM (2001) Distribution and abundance of aphidophagous hoverflies (Diptera: Syrphidae) in wildflower patches and field margin habitats. Agr Forest Entomol 3: 57–64.

    Article  Google Scholar 

  • Symondson WOC, Cesarini S, Dodd PW, Harper GL, Bruford MW, Glen DM, Wiltshire CW, Harwood JD (2006) Biodiversity vs. biocontrol: Positive and negative effects of alternative prey on control of slugs by carabid beetles. B Entomol Res 96: 637–645.

    Article  CAS  Google Scholar 

  • Tahvanainen JO, Root RB (1972) The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Oecologia 10: 321.

    Article  Google Scholar 

  • Theunissen J, Booij CJH, Lotz LAP (1995) Effects of intercropping white cabbage with clovers on pest infestation and yield. Entomol Exp Appl 74: 7–16.

    Article  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101: 18–25.

    Article  Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285: 893–895.

    Article  PubMed  CAS  Google Scholar 

  • Thomas SR, Noordhuis R, Holland JM, Goulson D (2002) Botanical diversity of beetle banks: Effects of age and comparison with conventional arable field margins in southern UK. Agr Ecosyst Environ 93: 403–412.

    Article  Google Scholar 

  • Thomas CD, Thomas JA, Warren MS (1992) Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92: 563–567.

    Article  Google Scholar 

  • Thorbek P, Bilde T (2004) Reduced numbers of generalist arthropod predators after crop management. J Appl Ecol 41: 526–538.

    Article  Google Scholar 

  • Tietjen WJ, Cady AB (2007) Sublethal exposure to a neurotoxic pesticide affects activity rhythms and patterns of four spider species. J Arachnol 35: 396–406.

    Article  Google Scholar 

  • Tixier P, Malezieux E, Dorel M, Bockstaller C, Girardin P (2007) Rpest – an indicator linked to a crop model to assess the dynamics of the risk of pesticide water pollution: Application to banana-based cropping systems. European J Agron 26: 71–81.

    Article  CAS  Google Scholar 

  • Tonhasca A, Bryne DN (1994) The effects of crop diversification on herbivorous insects: A meta-analysis approach. Ecol Entomol 19: 239–244.

    Article  Google Scholar 

  • Trenbath BR (1993) Intercropping for the management of pests and diseases. Field Crops Res 34: 381–405.

    Article  Google Scholar 

  • Valantin-Morison M, Lemarié S, Aubertot JN, Reau R, Lacroix A (2010) Utilization of a model to re-design integrated crop management for winter oilseed rape. IOBC/wprs Bull (in press).

    Google Scholar 

  • Valantin-Morison M, Meynard JM (2008) Diagnosis of limiting factors of organic oilseed rape yield. A survey of farmers’ fields. Agronomy for Sustainable Development 28: 527–539.

    Article  CAS  Google Scholar 

  • Valantin-Morison M, Meynard JM, Doré T (2007) Effects of crop management and surrounding field environment on insect incidence in organic winter oilseed rape (Brassica napus L.). Crop Prot 26: 1108–1120.

    Article  Google Scholar 

  • Valantin-Morison M, Quere L (2006) Effects of turnip rape trap crops on oilseed rape pests in a network of organic farmers’ fields. CD-Rom Proc Int Symp Integrated Pest Management in Oilseed Rape, 3–5 April 2006, Göttingen, Germany.

    Google Scholar 

  • Van Emden HF (1991) The role of host plant resistance in insect pest mis-management. Bull Entomol Res 81: 123–126.

    Article  Google Scholar 

  • Vandermeer J (1995) The ecological basis of alternative agriculture. Annu Rev Ecol Syst 26: 201–224.

    Article  Google Scholar 

  • Vereijken P (1997) A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. European J Agron 7: 235–250.

    Article  Google Scholar 

  • Vickerman GP (1992) The effects of different pesticide regimes on the invertebrate fauna of winter wheat. Pesticides, cereal farming and the environment: The boxworth project. HMSO, London, UK.

    Google Scholar 

  • Weiss MJ, Schatz BG, Gardner JC, Nead BA (1994) Flea beetle (Coleoptera: Chrysomelidae) populations and crop yield in field pea and oilseed rape intercrops. Environ Entomol 23: 654–658.

    Google Scholar 

  • West JS, Fitt BDL, Leech PK, Biddulph JE, Huang YJ, Balesdent MH (2002) Effects of timing of Leptosphaeria maculans ascospore release and fungicide regime on phoma leaf spot and phoma stem canker development on winter oilseed rape (Brassica napus) in southern England. Plant Pathol 51: 454–463.

    Article  Google Scholar 

  • Williams IH, Free JB (1979) Compensation of oil seed rape (Brassica napus L.) plants after damage to their buds and pods. J Agr Sci 92: 53–59.

    Article  Google Scholar 

  • Winstone L, Iles DR, Kendall DA (1996) Effects of rotation and cultivation on polyphagous predators in conventional and integrated farming systems. Aspects Appl Biol 47: 111–118.

    Google Scholar 

  • Wyss E (1995) The effects of weed strips on aphids and aphidophagous predators in an apple orchard. Entomol Exp Appl 75: 43–49.

    Article  Google Scholar 

  • Wäckers FL (2004) Assessing the suitability of flowering herbs as parasitoid food sources: Flower attractiveness and nectar accessibility. Biol Control 29: 307–314.

    Article  Google Scholar 

  • Zabel J, Tscharntke T (1998) Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially? Oecologia 116: 419–425.

    Article  Google Scholar 

  • Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2008a) Effect of within-field and landscape factors on insect damage in winter oilseed rape. Agr Ecosyst Environ 123: 233–238.

    Article  Google Scholar 

  • Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2008b) Insect pests in winter oilseed rape affected by field and landscape characteristics. Basic Appl Ecol 9: 682–690.

    Article  Google Scholar 

  • Zehnder G, Gurr GM, Kuhne S, Wade MR, Wratten SD, Wyss E (2007) Arthropod pest management in organic crops. Annu Rev Entomol 52: 57–80.

    Article  PubMed  CAS  Google Scholar 

  • Zehnder GW, Hough-Goldstein J (1989) Colorado potato beetle (Coleoptera: Chrysomelidae) population development and effects on yield of potatoes with and without straw mulch. J Econ Entomol 83: 1982–1987.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the editor, Ingrid H. Williams, for useful suggestions and S. Tanis-Plant for helpful English corrections on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Rusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rusch, A., Valantin-Morison, M., Sarthou, J.P., Roger-Estrade, J. (2010). Integrating Crop and Landscape Management into New Crop Protection Strategies to Enhance Biological Control of Oilseed Rape Insect Pests. In: Williams, I. (eds) Biocontrol-Based Integrated Management of Oilseed Rape Pests. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3983-5_17

Download citation

Publish with us

Policies and ethics