Skip to main content

Molecular Basis Underlying Caste Differentiation in Termites

  • Chapter
  • First Online:
Biology of Termites: a Modern Synthesis

Abstract

Termite caste differentiation is a multifaceted process that is under the control of a range of intrinsic and extrinsic factors, and it has challenged researchers for decades. Advances in molecular, genomic, and integrative or “systems” biology in the past decade have greatly facilitated efforts to begin to understand this process. Using molecular tools, it is now possible to investigate caste differentiation through hypothesis-driven mechanistic studies at the sub- and super-organismal levels. This chapter provides examples of approaches to study the molecular bases of caste differentiation; it describes molecular biology approaches for gene and protein discovery and characterization, relevant genes and proteins that have been identified, and a contextual foundation on which genome sequencing can now be considered. Once whole genome sequences of termites are available it will be possible to conduct highly detailed comparative, integrative, functional and translational genomics studies that define: (1) the complex milieu of intrinsic and extrinsic factors that interact to drive caste differentiation (including genetic and environmental factors), (2) how genes used in solitary life have been co-opted for social functions, and (3) social evolution in termites and their ancestors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouheif E, Wray G (2002) Evolution of gene network underlying wing polyphenism in ants. Science 297:249–252

    Article  PubMed  CAS  Google Scholar 

  • Adams MD et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Amdam GV (2006) The making of a social insect – the regulatory architecture of social design. Proceedings of XV International IUSSI Congress, 5–8

    Google Scholar 

  • Amdam GV, Norberg K, Fondrk MK, Page RE Jr (2004) Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. Proc Natl Acad Sci U S A 101:11350–11355

    Article  PubMed  CAS  Google Scholar 

  • Amdam GV, Norberg K, Hagen A, Omholt SW (2003) Social exploitation of vitellogenin. Proc Natl Acad Sci U S A 100:1799–1802

    Article  PubMed  CAS  Google Scholar 

  • Ament SA, Corona M, Pollock HS, Robinson GE (2008) Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc Natl Acad Sci U S A 105:4226–4231

    Article  PubMed  CAS  Google Scholar 

  • Ampion M, Quennedey A (1981) The abdominal epidermal glands of termites and their phylogenetic significance. In: Howse PE, Clément JL (eds) Biosystematics of social insects. Academic Press, London, pp 249–261

    Google Scholar 

  • Andersen JF, Walding JK, Evans PH et al (1997) Substrate specificity for the epoxidation terpenoids and active site topology of house fly cytochrome P450 6A1. Chem Res Toxicol 10:156–164

    Article  PubMed  CAS  Google Scholar 

  • Bagnères AG, Clément JL, Blum MS et al (1990) Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud): polymorphism and chemotaxonomy. J Chem Ecol 16:3213–3244

    Article  Google Scholar 

  • Baker FC (1990) Techniques for identification and quantification of juvenile hormones and related compounds in arthropods. In: Gupta AP (ed) Morphogenetic hormones of arthropods. Rutgers University Press, New Brunswick, NJ and London, pp 389–453

    Google Scholar 

  • Bellés X, Martín D, Piulachs MD (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 50:181–199

    Article  PubMed  CAS  Google Scholar 

  • Bier K, Müller W (1969) DNA-Messungen bei Insekten und eine Hypothese über retardierte Evolution und besonderen DNA-Reichtum in Tierreich. Biol Zbl 88:425–449

    CAS  Google Scholar 

  • Bloch G, Wheeler DE, Robinson GE (2002) Endocrine influences on the organization of insect societies. In: Brent CS, Schal C, Pfaff DW et al (eds) Hormones, brain and behavior. Academic Press, San Diego, CA, pp 195–235

    Chapter  Google Scholar 

  • Brent CS, Schol C, Vargo EL (2005) Endocrine changes in maturing primary queens of Zootermopsis angusticollis. J Insect Physiol 51:1200–1209

    Article  PubMed  CAS  Google Scholar 

  • Burmester T, Scheller K (1999) Ligands and receptors: common theme in insect storage protein transport. Naturwissenschaften 86:468–474

    Article  PubMed  CAS  Google Scholar 

  • Byrne KA, Lehnert SA, Johnson SE, Moore SS (1999) Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 239:317–324

    Article  PubMed  CAS  Google Scholar 

  • Cameron SL, Whiting MF (2007) Mitochondrial genomic comparisons of the subterranean termites from the genus Reticulitermes (Insecta: Isoptera: Rhinotermitidae). Genome 50:188–202

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to diversity: molecular genetics and the evolution of animal design. Blackwell Publishing, Malden, MA

    Google Scholar 

  • Cheung BHH, Arellano-Carbajal F, Rybicki I, de Bono M (2004) Soluble guanylate cyclases act in neurons exposed to the body fluid to promote C. elegans aggregation behavior. Curr Biol 14:1105–1111

    Article  PubMed  CAS  Google Scholar 

  • Ciudad L, Piulachs MD, Bellés X (2006) Systemic RNAi of the cockroach vitellogenin receptor results in a phenotype similar to that of the Drosophila yolkless mutant. FEBS J 273:325–335

    Article  PubMed  CAS  Google Scholar 

  • Claudianos C, Ranson H, Johnson RM et al (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15:615–636

    Article  PubMed  CAS  Google Scholar 

  • Cornette R, Gotoh H, Koshikawa S, Miura T (2008) Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). J Insect Physiol 54:922–930

    Article  PubMed  CAS  Google Scholar 

  • Cornette R, Koshikawa S, Hojo M et al (2006) Caste-specific cytochrome P450 in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). Insect Mol Biol 15:235–244

    Article  PubMed  CAS  Google Scholar 

  • Cornette R, Matsumoto T, Miura T (2007) Histological analysis on fat body development and molting events during soldier differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). Zool Sci 24:1066–1074

    Article  PubMed  Google Scholar 

  • Cornman RS, Togawa T, Dunn WA et al (2008) Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. BMC Genomics 9:22

    Article  PubMed  CAS  Google Scholar 

  • Crosland MWJ, Lok CM, Wong TC et al (1997) Division of labour in a lower termite: the majority of tasks are performed by older workers. Anim Behav 54:999–1012

    Article  PubMed  Google Scholar 

  • Crosland MWJ, Su N-Y, Scheffrahn RH (2005) Arolia in termites (Isoptera): functional significance and evolutionary loss. Insectes Soc 52:63–66

    Article  Google Scholar 

  • Deligne J, Quennedey A, Blum MS (1981) The enemies and defense mechanisms of termites. In: Hermann HR (ed) Social insects, vol 2. Academic Press, New York, NY, pp 1–76

    Google Scholar 

  • Dolzel J, Bartos J, Voglmayr H, Greihuber J (2003) Nuclear DNA conetent and genome size of trout and human. Cytometry A 51:127–128

    Article  Google Scholar 

  • Dong SL, Mao L, Henderson GR (2009) Physical contact between soldier and worker is essential in soldier self-regulation of Coptotermes formosanus (Isoptera, Rhinotermitidae). Insectes Soc 56:28–34

    Article  Google Scholar 

  • Edgar BA (2006) How flies get their size: genetics meets physiology. Nat Rev Genet 7:907–916

    Article  PubMed  CAS  Google Scholar 

  • Elliott KL, Chan KK, Teesch L et al (2009) Identification of Phe-Gly-Leu-amide type allatostatin-7 in Reticulitermes flavipes: its localization in tissues and relation to juvenile hormone synthesis. Peptides 30:495–506

    Article  PubMed  CAS  Google Scholar 

  • Elliott KL, Stay B (2007) Juvenile hormone synthesis as related to egg development in neotenic reproductives of the termite Reticulitermes flavipes, with observations on urates in the fat body. Gen Comp Endocrinol 152:102–110

    Article  PubMed  CAS  Google Scholar 

  • Elliott KL, Stay B (2008) Changes in juvenile hormone synthesis in the termite Reticulitermes flavipes during development of soldiers and neotenic reproductives from groups of isolated workers. J Insect Physiol 54:492–500

    Article  PubMed  CAS  Google Scholar 

  • Emlen DJ, Nijout HF (2000) The development and evolution of exaggerated morphologies in insects. Annu Rev Entomol 45:661–708

    Article  PubMed  CAS  Google Scholar 

  • Emlen DJ, Szafran Q, Corley LW, Dworkin I (2006) Insulin signaling and limb-patterning: candidate pathways for the origin and evolutionary diversification of beetle horns. Heredity 97:179–191

    Article  PubMed  CAS  Google Scholar 

  • Falckh PH, Balcombe W, Haritos VS, Ahokas JT (1997) Isolation and identification of a cytochrome P450 sequence in an Australian termite, Mastotermes darwiniensis. Biochem Biophys Res Commun 241:579–583

    Article  PubMed  CAS  Google Scholar 

  • Fei H, Henderson G (2002) Formosan subterranean termite (Isoptera: Rhinotermitidae) wood consumption and worker survival as affected by temperature and soldier proportion. Environ Entomol 31:509–514

    Article  Google Scholar 

  • Feyereisen R (2005) Insect cytochrome P450. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive Molecular Insect Science, vol 4. Elsevier, Oxford, pp 1–77

    Chapter  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:744–745

    Article  Google Scholar 

  • Fujita A, Miura T, Matsumoto T (2008) Differences in cellulose digestive systems among castes in two termite lineages. Physiol Entomol 33:73–82

    Article  CAS  Google Scholar 

  • Gilbert SF (2001) Ecological developmental biology: developmental biology meets the real world. Dev Biol 233:1–12

    Article  PubMed  CAS  Google Scholar 

  • Gilbert LI, Granger NA, Roe RM (2000) The juvenile hormones: historical facts and speculations on future research directions. Insect Biochem Mol Biol 30:617–644

    Article  PubMed  CAS  Google Scholar 

  • Goodisman MAD, Crozier RH (2003) Association between caste and genotype in the termite Mastotermes darwiniensis Froggatt. Aust J Entomol 42:1–5

    Article  Google Scholar 

  • Goodisman MAD, Isoe J, Wheeler DE, Wells MA (2005) Evolution of insect metamorphosis: a microarray-based study of larval and adult gene expression in the ant Camponotus festinatus. Evolution 59:858–870

    PubMed  CAS  Google Scholar 

  • Gotoh H, Cornette R, Koshikawa S, Miura T (2008) Effects of precocenes on the corpora allata and the JH titer in the damp-wood termite Hodotermopsis sjostedti (Isoptera: Termopsidae). Sociobiology 52:345–356

    Google Scholar 

  • Gotoh A, Sameshima S, Tsuji K et al (2005) Apoptotic wing degeneration and formation of an altruism-regulating glandular appendage (gemma) in the ponerine ant Diacamma sp. from Japan (Hymenoptera, Formicidae, Ponerinae). Dev Genes Evol 215:69–77

    Article  PubMed  CAS  Google Scholar 

  • Greenberg S, Tobe SS (1985) Adaptation of a radiochemical assay for juvenile hormone biosynthesis to study caste differentiation in a primitive termite. J Insect Physiol 31:347–352

    Article  CAS  Google Scholar 

  • Gregory TR (2002) The C-value enigma. Ph.D. Thesis, Department of Zoology, University of Guelph, Guelph, Ontario, Canada. 894 pp. http://www.genomesize.com/rgregory/thesis/

  • Gregory TR (2007) Animal Genome Size Database [online]. Available from http://www.genomesize.com

  • Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  PubMed  CAS  Google Scholar 

  • Grozinger CM, Fan Y, Hoover SE, Winston ML (2007) Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Mol Ecol 16:4837–4848

    Article  PubMed  CAS  Google Scholar 

  • Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE (2003) Pheromone-mediated gene expression in the honey bee brain. Proc Natl Acad Sci U S A 100:14519–14525

    Article  PubMed  CAS  Google Scholar 

  • Guidugli KR, Nascimento AM, Amdam GV et al (2005) Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Lett 579:4961–4965

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour, I, II. J Theor Biol 7:1–52

    Article  PubMed  CAS  Google Scholar 

  • Haverty MI (1977) The proportion of soldiers in termite colonies: a list and bibliography. Sociobiology 2:199–216

    Google Scholar 

  • Haverty MI, Howard RW (1981) Production of soldiers and maintenance of soldier proportions by laboratory experimental groups of Reticulitermes flavipes (Kollar) and Reticulitermes virginicus (Banks) (Isoptera: Rhinotetrmitidae). Insectes Soc 28:32–39

    Article  Google Scholar 

  • Haverty MI, Su N-Y, Tamashiro M, Tamamoto R (1989) Concentration-dependent presoldier induction and feeding deterrency: potential of two insect growth regulators for remedial control of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol 82:1370–1374

    Google Scholar 

  • Hayashi Y, Lo N, Miyata H, Kitade O (2007) Sex-linked genetic influence on caste determination in a termite. Science 318:985–987

    Article  PubMed  CAS  Google Scholar 

  • Helvig C, Koener JF, Unnithan GC, Feyereisen R (2004) CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc Natl Acad Sci U S A 101:4024–4029

    Article  PubMed  CAS  Google Scholar 

  • Henderson G (1998) Primer pheromones and possible soldier caste influence on the evolution of sociality in lower termites. In: Vander Meer RK, Breed MD, Winston ML, Espelie KE (eds) Pheromone communication in social insects. Westview Press, Boulder, CO, pp 314–330

    Google Scholar 

  • Hojo M, Koshikawa S, Cornette R et al (2005a) Identification of soldier-specific genes in the nasute termite Nasutitermes takasagoensis (Isoptera: Termitidae). Entomol Sci 8:379–387

    Article  Google Scholar 

  • Hojo M, Matsumoto T, Miura T (2007) Cloning and expression of a geranylgeranyl diphosphate synthase gene: insights into the synthesis of termite defense secretion. Insect Mol Biol 16:121–131

    Article  PubMed  CAS  Google Scholar 

  • Hojo M, Morioka M, Matsumoto T, Miura T (2005b) Identification of soldier caste-specific protein in the frontal gland of nasute termite Nasutitermes takasagoensis (Isoptera: Termitidae). Insect Biochem Mol 35:347–354

    Article  CAS  Google Scholar 

  • Holbrook GL, Schal C (2004) Maternal investment affects offspring phenotypic plasticity in viviparous cockroach. Proc Natl Acad Sci U S A 101:5595–5597

    Article  PubMed  CAS  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The Ants. Belknap Press, Harvard, MA

    Google Scholar 

  • Holt RA, Subramianian M, Halpern A et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  PubMed  CAS  Google Scholar 

  • Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Article  CAS  Google Scholar 

  • Hongo Y, Sharma VK, Prakash T et al (2008) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109

    Article  CAS  Google Scholar 

  • Hopkin M (2006) RNAi scoops medial Nobel. Nat News. doi:10.1038/news061002-2

    Google Scholar 

  • Howard RW, Haverty MI (1979) Termites and juvenile hormone analogues: a review of methodology and observed effects. Sociobiology 4:269–278

    Google Scholar 

  • Howard RW, Haverty MI (1981) Seasonal variation in caste proportions of field colonies of Reticulitermes flavipes (Kollar). Environ Entomol 10:546–549

    Google Scholar 

  • Hrdý I (1985) The role of juvenile hormone and juvenoids in soldier formation in Rhinotermitidae. In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Caste differentiation in social insects. Pergamon Press, Oxford, pp 245–249

    Google Scholar 

  • Hrdý I, Kuldová J, Hanus R, Wimmer Z (2006) Juvenile hormone III, hydroprene and a juvenogen as soldier caste differentiation regulators in three Reticulitermes species: poteintial of juvenile hormone analogues in termite control. Pest Manag Sci 62:848–854

    Article  PubMed  CAS  Google Scholar 

  • Hunt JH, Amdam GV (2005) Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science 308:264–267

    Article  PubMed  CAS  Google Scholar 

  • Hunt GJ, Amdam GV, Schlipalius D et al (2007a) Behavioral genomics of honey bee foraging and nest defense. Naturwissenschaften 94:247–267

    Article  PubMed  CAS  Google Scholar 

  • Hunt JH, Buck NA, Wheeler DE (2003) Storage proteins in vespid wasps: characterization, developmental pattern, and occurrence in adults. J Insect Physiol 49:785–794

    Article  PubMed  CAS  Google Scholar 

  • Hunt JH, Kensinger BJ, Kossuth JA et al (2007b) A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proc Natl Acad Sci U S A 104:14020–14025

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Aonuma H, Miura T (2008) Soldier-specific modification of the mandibular motor neurons in termites. PLoS ONE 3:e2617

    Article  PubMed  CAS  Google Scholar 

  • Johnston ML, Wheeler DE (2007) The role of storage proteins in colony-founding in termites. Insectes Soc 54:383–387

    Article  Google Scholar 

  • Jones SC (1984) Evaluation of two insect growth regulators for the bait-block method of subterranean termite (Isoptera: Rhinotermitidae) control. J Econ Entomol 77:1086–1091

    CAS  Google Scholar 

  • Katoh H, Matsumoto T, Miura T (2007) Alate differentiation and compound-eye development in the dry-wood termite Neotermes koshunensis (Isoptera, Kalotermitidae). Insectes Soc 54:11–19

    Article  Google Scholar 

  • Keeling CI, Bearfield JC, Young S et al (2006) Effect of juvenile hormone on gene expression in the pheromone-producing midgut of the pine engraver beetle, Ips pini. Insect Mol Biol 15:207–216

    Article  PubMed  CAS  Google Scholar 

  • Keeling CI, Blomquist GJ, Tittiger C (2004) Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae). Naturwissenschaften 91:324–328

    Article  PubMed  CAS  Google Scholar 

  • Korb J, Hartfelder K (2008) Life history and development – a framework for understanding developmental plasticity in lower termites. Biol Rev 83:295–313

    Article  PubMed  Google Scholar 

  • Korb J, Roux EA, Lenz M (2003) Proximate factors influencing soldier development in the basal termite Cryptotermes secundus (Hill). Insectes Soc 50:299–303

    Article  Google Scholar 

  • Korb J, Weil T, Hoffman K et al (2009) A gene necessary for reproductive suppression in termites. Science 324:758–759

    Article  PubMed  CAS  Google Scholar 

  • Koshikawa S, Cornette R, Hojo M et al (2005) Screening of genes expressed in developing mandibles during soldier differentiation in the termite Hodotermopsis sjostedti. FEBS Lett 579:1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Koshikawa S, Matsumoto T, Miura T (2002) Morphometric changes during soldier differentiation of the damp-wood termite Hodotermopsis japonica (Isoptera: Termopsidae). Insectes Soc 49:245–250

    Article  Google Scholar 

  • Koshikawa S, Matsumoto T, Miura T (2003) Mandibular morphogenesis during soldier differentiation in the damp-wood termite Hodotermopsis sjoestedti (Isoptera: Termopsidae). Naturwissenschaften 90:180–184

    PubMed  CAS  Google Scholar 

  • Koshikawa S, Miyazaki S, Cornette R et al (2008) Genome size of termites (Insecta, Dictyoptera, Isoptera) and wood roaches (Insecta, Dictyoptera, Cryptocercidae). Naturwissenschaften 95:859–867

    Article  PubMed  CAS  Google Scholar 

  • Lainé LV, Wright DJ (2003) The life cycle of Reticulitermes spp. (Isoptera: Rhinotermitidae): what do we know? Bull Entomol Res 93:267–278

    Article  PubMed  Google Scholar 

  • Lanzrein B, Gentinetta V, Fehr R (1985) Titers of juvenile hormone and ecdysteroids in reproductives and eggs of Macrotermes michaelseni: relation to caste determination? In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Caste differentiation in social insects. Pergamon Press, Oxford, pp 307–327

    Google Scholar 

  • Le Conte Y, Bécard JM, Costagliola G et al (2006) Larval salivary glands are a source of primer and releaser pheromone in honey bee (Apis mellifera L.). Naturwissenschaften 93:237–241

    Article  PubMed  CAS  Google Scholar 

  • Lefeuve P, Bordereau C (1984) Soldier formation regulated by a primer pheromone from the soldier frontal gland in a higher termite, Nasutitermes lujae. Proc Natl Acad Sci U S A 81:7665–7668

    Article  PubMed  CAS  Google Scholar 

  • Lelis AT, Everaerts C (1993) Effects of juvenile hormone analogues upon soldier differentiation in the termite Reticulitermes santonensis (Rhinotermitidae, Heterotermitinae). J Morphol 217:239–261

    Article  CAS  Google Scholar 

  • Leoncini I, Le Conte Y, Costagliola G et al (2004) Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bee. Proc Natl Acad Sci U S A 101:17559–17564

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Averboukh L, Pardee AB (1993) Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res 21:3269–3275

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Liénard MA, Lassance JM, Paulmier I et al (2006) Differential expression of cytochrome c oxidase subunit III gene in castes of the termite Reticulitermes santonensis. J Insect Physiol 52:551–557

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Henderson G, Mao L, Laine RA (2005a) Seasonal variation of juvenile hormone titers of the Formosan suberranean termite, Coptotermes formosanus (Rhinotermitidae). Environ Entomol 34:557–562

    Article  CAS  Google Scholar 

  • Liu Y, Henderson G, Mao L, Laine RA (2005b) Effects of temperature and nutrition on juvenile homone titers of Coptotermes formosanus (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 98:732–737

    Article  CAS  Google Scholar 

  • Lo N, Tokuda G, Watanabe H et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  PubMed  CAS  Google Scholar 

  • Lüscher M (1953) The termite and the cell. Sci Am 188:74–78

    Article  Google Scholar 

  • Lüscher M (1958) Von der Gruppe zum “Staat” bei Insekten. In: Lehmann FE (ed) Gestaltungensozialen Lebens bei Tier und Mensch. Francke Verlag, Bern, pp 48–65

    Google Scholar 

  • Lüscher M (1960) Hormonal control of caste differentiation in termites. Ann N Y Acad Sci 89:549–556

    Article  Google Scholar 

  • Lüscher M (1961) Social control of polymorphism in termites. Symp R Entomol Soc Lond 1:57–67

    Google Scholar 

  • Lüscher M (1974) Kasten und Kastendifferenzierung bei niederen Termiten. In: Schmidt GH (ed) Sozialpolymorphisms bei Insekten. Wiss Verl Ges, Stuttgart, pp 695–739

    Google Scholar 

  • Lüscher M (1976) Evidence for an endocrine control of caste determination in higher termites. In: Lüscher M (ed) Phase and caste determination in insects – endocrine aspects. Pergamon Press, Oxford, pp 91–103

    Google Scholar 

  • Maekawa K, Mizuno S, Koshikawa S, Miura T (2008) Compound eye development during caste differentiation of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Zool Sci 25:699–705

    Article  PubMed  Google Scholar 

  • Mao L, Henderson G (2007) A case for a free-running circannual rhythm in soldier developmetal time of Formosan subterranean termites. Insectes Soc 54:388–392

    Article  Google Scholar 

  • Mao L, Henderson G, Liu Y, Laine RA (2005) Formosan subterranean termite (Isoptera: Rhinotermitidae) soldiers regulate juvenile homone levels and caste differentiation in workers. Ann Entomol Soc Am 98:340–345

    Article  CAS  Google Scholar 

  • Matsumura F, Coppel HC, Tai A (1968) Isolation and identification of termite trail-following pheromone. Nature 219:963–964

    Article  PubMed  CAS  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  PubMed  CAS  Google Scholar 

  • Meyer D, Lanzrein B, Lüscher M, Nakanishi K (1976) Isolation and identification of a juvenile hormone in termites. Experientia 32:773–780

    Google Scholar 

  • Miller EM (1969) Caste differentiation in the lower termites. In: Krishna K, Weesner FM (eds) Biology of termites, vol I. Academic Press, New York, NY, pp 283–310

    Google Scholar 

  • Minelli A (2003) The development of animal form – ontogeny, morphology, and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Miura T (2001) Morphogenesis and gene expression in the soldier-caste differentiation of termites. Insectes Soc 48:216–223

    Article  Google Scholar 

  • Miura T (2004) Proximate mechanisms and evolution of caste polyphenism in social insects: from society to genes. Ecol Res 19:141–148

    Article  CAS  Google Scholar 

  • Miura T (2005) Developmental regulation of caste-specific characters in social-insect polyphenism. Evol Dev 7:122–129

    Article  PubMed  Google Scholar 

  • Miura T, Kamikouchi A, Sawata M et al (1999) Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae). Proc Natl Acad Sci U S A 96:13874–13879

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Matsumoto T (2000) Soldier morphogenesis in a nasute termite: discovery of a disk-like structure forming a soldier nasus. Proc R Soc Lond B 267:1185–1189

    Article  CAS  Google Scholar 

  • Miura T, Roisin Y, Matsumoto T (1998) Developmental pathways and polyethism of neuter castes in the processional nasute termite Hospitalitermes medioflavus (Isoptera: Termitidae). Zool Sci 15:843–848

    Article  Google Scholar 

  • Moczek AP, Nagy LM (2005) Diverse developmental mechanisms contribute to different levels of diversity in horned beetles. Evol Dev 7:175–185

    Article  PubMed  Google Scholar 

  • Moczek AP, Rose D, Sewell W, Kesselring BR (2006) Conservation, innovation, and the evolution of horned beetle diversity. Dev Genes Evol 216:655–665

    Article  PubMed  Google Scholar 

  • Myles TG, Nutting WL (1988) Termite eusocial evolution: a re-examination of Bartz’s hypothesis and assumptions. Quart Rev Biol 63:1–23

    Article  Google Scholar 

  • Nakashima KI, Watanabe H, Saitoh H (2002) Dual cellulose digesting system of the wood feeding termite, Coptotermes formosanus. Insect Biochem Mol Biol 32:777–784

    Article  PubMed  CAS  Google Scholar 

  • Nalepa CA (1994) Nourishment and the evolution of termite eusociality. In: Hunt, JH and Nalepa, CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 57–104

    Google Scholar 

  • Nalepa CA, Bandi C (2000) Characterizing the ancestors: paedomorphosis and termite evolution. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 53–75

    Google Scholar 

  • Nelson LJ, Cool LG, Forschler BT, Haverty MI (2001) Correspondence of soldier difence secretion mixtures with cuticular hydrocarbon phenotypes for chemotaxonomy of the termite genus Reticulitermes in North America. J Chem Ecol 27:1449–1479

    Article  PubMed  CAS  Google Scholar 

  • Nelson CM, Ihle KE, Fondrk MK et al (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5(3):e62

    Article  PubMed  CAS  Google Scholar 

  • Nene V, Wortman JR, Lawson D et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723

    Article  PubMed  CAS  Google Scholar 

  • Nijhout HF (1994) Insect hormones. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Nijhout HF (1999) Control mechanisms of polyphenic development in insects. Bioscience 49:181–192

    Article  Google Scholar 

  • Nijhout HF (2003) Development and evolution of adaptive polyphenism. Evol Dev 5:9–18

    Article  PubMed  Google Scholar 

  • Nijhout HF, Wheeler DE (1982) Juvenile hormone and the physiological basis of insect polyphenism. Quart Rev Biol 57:109–133

    Article  CAS  Google Scholar 

  • Noirot C (1969a) Formation of castes in the higher termites. In: Krishna K, Weesner FM (eds) Biology of termites, vol I. Academic Press, New York, NY, pp 311–350

    Google Scholar 

  • Noirot C (1969b) Glands and secretions. In: Krishna K, Weesner FM (eds) Biology of termites, vol I. Academic Press, New York, NY, pp 89–123

    Google Scholar 

  • Noirot C (1985) The caste system in higher termites. In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Caste differentiation in social insects. Pergamon Press, Oxford, pp 75–86

    Google Scholar 

  • Noirot C (1989) Social structure in termite societies. Ethol Ecol Evol 1:1–17

    Article  Google Scholar 

  • Noirot C (1990) Sexual castes and reproductive strategies in termites. In: Engels W (ed) Social insects: an evolutionary approach to castes and reproduction. Springer, Berlin, pp 5–35

    Google Scholar 

  • Noirot C (1991) Caste differentiation in Isoptera: basic features, role of pheromones. Ethol Ecol Evol Special Issue 1:3–7

    Google Scholar 

  • Noirot C, Pasteels JM (1987) Ontogenetic development and evolution of the worker caste in termites. Experientia 43:851–860

    Article  Google Scholar 

  • Ogino K, Hirono Y, Matsumoto T, Ishikawa H (1993) Juvenile hormone analogue, S-31183, causes a high level induction of presoldier differentiation in the Japanese damp-wood termite. Zool Sci 10:361–366

    CAS  Google Scholar 

  • Okot-Kotber BM (1980) The influence of juvenile hormone analogue on soldier differentiation in the higher termite, Macrotermes michaelseni. Physiol Entomol 5:407–416

    Article  CAS  Google Scholar 

  • Okot-Kotber M, Prestwich GD, Strambi A, Strambi C (1993) Changes in morphogenetic hormone titers in isolated workers of the termite Reticulitermes flavipes (Kollar). Gen Comp Endocrinol 90:290–295

    Article  PubMed  CAS  Google Scholar 

  • Okot-Kotber M, Ujvary I, Mollaaghababa R et al (1991) Physiological influence of fenoxycarb pro-insecticides and soldier head extracts of various termite species on soldier differentiation in Reticulitermes flavipes. Sociobiology 19:77–89

    Google Scholar 

  • Park YI, Raina AK (2003) Factors regulating caste differentiation in the Formosan subterranean termite with emphasis on soldier formation. Sociobiology 41:1–12

    Google Scholar 

  • Park YI, Raina AK (2004) Juvenile hormone III titers and regulation of soldier caste in Coptotermes formosanus (Isoptera: Rhinotermitidae). J Insect Physiol 50:561–566

    Article  PubMed  CAS  Google Scholar 

  • Park YI, Raina AK (2005) Regulation of juvenile hormone titers by soldiers in the Formosan subterranean termite, Coptotermes formosanus. J Insect Physiol 51:385–391

    Article  PubMed  CAS  Google Scholar 

  • Pasteels JM, Bordereau C (1998) Releaser pheromones in termites. In: Van der Meer RK, Breed MD, Winston ML, Espelie KE (eds) Pheromone communication in social insects. Westview Press, Boulder, CO, pp 193–215

    Google Scholar 

  • Pfaffl MW, Tichopad A, Progmet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper – excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  PubMed  CAS  Google Scholar 

  • Prestwich GD (1984) Defense mechanisms of termites. Annu Rev Entomol 29:201–232

    Article  CAS  Google Scholar 

  • Prestwich GD, Jones RW, Collins MS (1981) Terpene biosynthesis by nasute termite soldiers (Isoptera: Nasutitermitinae). Insect Biochem 11:331–336

    Article  CAS  Google Scholar 

  • Quintana A, Reinhard J, Faure R et al (2003) Interspecific variation in terpenoid composition of defensive secretions of European Reticulitermes termites. J Chem Ecol 29:639–652

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan VG, Aljamali MN, Sauer JR, Essenberg RC (2005) Application of RNA interference in tick salivary gland research. J Biomol Tech 16:297–305

    PubMed  Google Scholar 

  • Ranson H, Nikou D, Hutchinson M et al (2002) Molecular analysis of multiple cytochrome P450 genes from the malaria vector, Anopheles gambiae. Insect Mol Biol 11:409–418

    Article  PubMed  CAS  Google Scholar 

  • Reinhard J, Lacey MJ, Ibarra F et al (2002) Hydroquinone: a general phagostimulating pheromone in termites. J Chem Ecol 28:1–14

    Article  PubMed  CAS  Google Scholar 

  • Robinson GE (1999) Integrative animal behaviour and sociogenomics. Trends Ecol Evol 14:202–205

    Article  PubMed  Google Scholar 

  • Robinson GE, Grozinger CM, Whitfield CW (2005) Sociogenomics: social life in molecular terms. Nat Rev Genet 6:257–270

    Article  PubMed  CAS  Google Scholar 

  • Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 95–119

    Google Scholar 

  • Sabater-Muñoz B, Legeai F, Rispe C et al (2006) Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genome Biol 7:R21

    Article  PubMed  Google Scholar 

  • Sameshima S, Miura T, Matsumoto T (2004) Wing disc development during caste differentiation in the ant Pheidole megacephala (Hymenoptera: Formicidae). Evol Dev 6:336–341

    Article  PubMed  Google Scholar 

  • Sappington TW, Raikhel AS (1998) Molecular characteristics of insect vitellogenin and vitellogenin receptors. Insect Biochem Mol Biol 28:277–300

    Article  PubMed  CAS  Google Scholar 

  • Scharf ME, Buckspan CE, Grzymala TL, Zhou X (2007) Regulation of polyphenic caste differentiation in the termite Reticulitermes flavipes by interaction of intrinsic and extrinsic factors. J Exp Biol 210:4390–4398

    Article  PubMed  CAS  Google Scholar 

  • Scharf ME, Ratliff CR, Hoteling JT et al (2003a) Caste differentiation responses of two sympatric Reticulitermes termite species to juvenile hormone homologs and synthetic juvenoids in two laboratory assays. Insectes Soc 50:346–354

    Article  Google Scholar 

  • Scharf ME, Ratliff CR, Wu-Scharf D (2005a) Effects of juvenile hormone III on Reticulitermes flavipes: changes in hemolymph protein composition and gene expression. Insect Biochem Mol Biol 35:207–215

    Article  PubMed  CAS  Google Scholar 

  • Scharf ME, Tartar A (2008) Termite digestomes as sources of novel lignocellulases. Biofuels Bioprod Bioref 2:540–552

    Article  CAS  Google Scholar 

  • Scharf ME, Wu-Scharf D, Pittendrigh BR, Bennett GW (2003b) Caste- and development-associated gene expression in a lower termite. Genome Biol 4(10):R62

    Article  PubMed  Google Scholar 

  • Scharf ME, Wu-Scharf D, Zhou X et al (2005b) Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Mol Biol 14:31–44

    Article  PubMed  CAS  Google Scholar 

  • Scharf ME, Zhou X, Schwinghammer MA (2008) Application of RNA interference in functional genomics studies of a social insect. Methods Mol Biol 442:205–229

    Article  PubMed  CAS  Google Scholar 

  • Schwinghammer MA, Zhou X, Kambhampati S et al (2011) A novel gene from the takeout family involved in termite trail-following behavior. Gene: In press

    Google Scholar 

  • Seehuus S-C, Norberg K, Gimsa U et al (2006) Reproductive protein protects sterile honey bee workers from oxidative stress. Proc Natl Acad Sci U S A 103:962–967

    Article  PubMed  CAS  Google Scholar 

  • Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 52–93

    Google Scholar 

  • Slaytor M (2000) Energy metabolism in the termite and its gut microbiota. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 307–332

    Google Scholar 

  • Snyder MJ, Scott JA, Andersen JF, Feyereisen R (1996) Sampling P450 diversity by cloning polymerase chain reaction products obtained with degenerate primers. Meth Enzymol 272:304–312

    Article  PubMed  CAS  Google Scholar 

  • Stern DL, Emlen DJ (1999) The developmental basis for allometry in insects. Development 126:1091–1101

    PubMed  CAS  Google Scholar 

  • Stuart AM (1969) Social behavior and communication. In: Krishna K, Weesner FM (eds) Biology of termites, vol I. Academic Press, New York, NY, pp 233–282

    Google Scholar 

  • Sutherland TD, Unnithian GC, Feyereisen R (2000) Terpenoid-hydroxylase (CYP4C7) messenger RNA levels in the corpora allata: a marker for ovarian control of juvenile hormone synthesis in Diploptera punctata. J Insect Physiol 46:1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Mita K, Quan GX et al (2001) Mass isolation of cuticle protein cDNAs from wing discs of Bombyx mori and their characterizations. Insect Biochem Mol Biol 31:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Tartar A, Wheeler MM, Zhou X et al (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2:25

    Article  PubMed  CAS  Google Scholar 

  • Tarver MR, Schmelz EA, Scharf ME (2009) Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes. J Chem Ecol 35:256–264

    Article  PubMed  CAS  Google Scholar 

  • Tarver MR, Zhou X, Scharf ME (2010) Socio-environmental and semiochemical impacts on phenotypic plasticity and gene expression in a social insect, R. flavipes. BMC Mol Biol 11:28

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 229:1346–4351

    Article  CAS  Google Scholar 

  • Thompson GJ, Kitade O, Lo N, Crozier RH (2000) Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites. J Evol Biol 13:869–881

    Article  Google Scholar 

  • Thorne BL (1996) Termite terminology. Sociobiology 28:253–263

    Google Scholar 

  • Thorne BL, Traniello JFA (2003) Comparative social biology of basal taxa of ants and termites. Annu Rev Entomol 48:283–306

    Article  PubMed  CAS  Google Scholar 

  • Tijet N, Helvig C, Feyereisen R (2001) The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene 262:189–198

    Article  PubMed  CAS  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  PubMed  CAS  Google Scholar 

  • Tittiger C (2004) Functional genomics and insect chemical ecology. J Chem Ecol 30:2335–2358

    Article  PubMed  CAS  Google Scholar 

  • Todaka N, Moriya S, Saita K et al (2007) Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol 59:592–599

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Saito H, Watanabe H (2002) A digestive beta-glucosidase from the salivary glands of the termite, Neotermes koshunensis (Shiraki): distribution, characterization and isolation of its precursor cDNA by 5′- and 3′-RACE amplifications with degenerate primers. Insect Biochem Mol Biol 32:1681–1689

    Article  PubMed  CAS  Google Scholar 

  • Toth AL, Robinson GE (2007) Evo-devo and the evolution of social behavior. Trends Genet 23:334–341

    Article  PubMed  CAS  Google Scholar 

  • Traniello JFA, Leuthold RH (2000) Behavior and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 141–168

    Google Scholar 

  • Truman JW, Hiruma K, Allee JP (2006) Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science 312:1385–1388

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya M, Watanabe D, Maekawa K (2008) Effect on mandibular length of juvenile hormones and regulation of soldier differentiation in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Appl Entomol Zool 43:307–314

    Article  Google Scholar 

  • Vander Meer RK, Alonso LE (1998) Pheromone directed behavior in ants. In: Vander Meer RK, Breed MD, Winston ML, Espelie KE (eds) Pheromone communication in social insects. Westview Press, Boulder, CO, pp 159–192

    Google Scholar 

  • Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403

    Article  PubMed  CAS  Google Scholar 

  • Waller DA, LaFage JP (1988) Environmental influence on soldier differentiation in Coptotermes formosanus Shiraki (Rhinotermitidae). Insectes Soc 35:144–152

    Article  Google Scholar 

  • Warnecke F et al (2007) Metagenome and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:487–488

    Article  CAS  Google Scholar 

  • Watanabe D, Maekawa K (2008) Frontal-pore formation during soldier differentiation induced by juvenile hormone III in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Sociobiology 52:437–447

    Google Scholar 

  • Watson JAL, Sewell JJ (1985) Caste development in Mastotermes and Kalotermes. In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Caste differentiation in social insects. Pergamon Press, Oxford, pp 27–40

    Google Scholar 

  • Weesner FM (1969) External anatomy. In: Krishna K, Weesner FM (eds) Biology of termites, vol I. Academic Press, New York, NY, pp 19–47

    Google Scholar 

  • Weil T, Rehli M, Korb J (2007) Molecular basis for the reproductive division of labour in a lower termite. BMC Genomics 8:198

    Article  PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (1987) Flexible strategy and social evolution. In: Ito Y, Brown JL, Kikkawa J (eds) Animal societies: theories and facts. Japan Scientific Societies Press, Tokyo, pp 35–51

    Google Scholar 

  • West-Eberhard MJ (1996) Wasp societies as microcosms for the study of developmental and evolution. In: Turillazzi S, West-Eberhard MJ (eds) Natural history and evolution of paper wasps. Oxford University Press, New York, NY, pp 35–51

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 128:13–34

    Article  Google Scholar 

  • Wheeler DE, Buck N, Evans JD (2006) Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol Biol 15:597–602

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DE, Nijhout HF (2003) A perspective for understanding the modes of juvenile hormone action as a lipid signaling system. Bioessays 25:994–1001

    Article  PubMed  CAS  Google Scholar 

  • Wheeler MM, Zhou X, Scharf ME, Oi FM (2007) Molecular and biochemical markers for monitoring dynamic shifts of cellulolytic protozoa in Reticulitermes flavipes. Insect Biochem Mol Biol 37:1366–1374

    Article  PubMed  CAS  Google Scholar 

  • Whitfield CW, Band MR, Bonaldo MF (2002) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res 12:555–566

    Article  PubMed  Google Scholar 

  • Whitfield CW, Cziko AM, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–299

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1935) Functions of the corpus allatum of insects. Nature 136:338–339

    Article  Google Scholar 

  • Williams G, Cai XJ, Elliot JC, Harrold JA (2004) Anabolic neuropeptides. Physiol Behav 81:211–222

    Article  PubMed  CAS  Google Scholar 

  • Willis J (1999) Cuticular proteins in insects and crustaceans. Am Zool 39:600–609

    CAS  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wilson EO (1975) Sociobiology. Belknap press, Cambridge, MA

    Google Scholar 

  • Wilson EO, Bossert WH (1963) Chemical communication among insects. Recent Prog Horm Res 19:673–716

    PubMed  CAS  Google Scholar 

  • Wu-Scharf D, Scharf ME, Pittendrigh BR, Bennett GW (2003) Expressed sequence tags from a polyphenic Reticulitermes flavipes cDNA library. Sociobiology 41:479–490

    Google Scholar 

  • Yagi KJ, Kwok R, Chan KK (2005) Phe-Gly-Leu-amide allatostatin in the termite Reticulitermes flavipes: content in brain and corpus allatum and effect on juvenile hormone synthesis. J Insect Physiol 51:357–365

    Article  PubMed  CAS  Google Scholar 

  • Yang AS (2007) Thinking outside the embryo: the superorganism as a model for evo-devo studies. Biol Theor 2:398–408

    Article  Google Scholar 

  • Zegzouti H, Marty C, Jones B et al (1997) Improved screening of cDNAs generated by mRNA differential display enables the selection of true positives and the isolation of weakly expressed messages. Plant Mol Biol Rep 15:236–245

    Article  CAS  Google Scholar 

  • Zhou X, Oi FM, Scharf ME (2006a) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci U S A 103:4499–4504

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Smith JA, Oi FM et al (2007a) Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395:29–39

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Song C, Grzymala TL et al (2006b) Juvenile hormone and colony conditions differentially influence cytochrome P450 gene expression in the termite Reticulitermes flavipes. Insect Mol Biol 15:749–761

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Tarver MR, Bennett GW (2006c) Two hexamerin genes from the termite Reticulitermes flavipes: sequence, expression, and proposed functions in caste regulation. Gene 376:47–58

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Tarver MR, Scharf ME (2007b) Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect. Development 134:601–610

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Wheeler MM, Oi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Miura, T., Scharf, M.E. (2010). Molecular Basis Underlying Caste Differentiation in Termites. In: Bignell, D., Roisin, Y., Lo, N. (eds) Biology of Termites: a Modern Synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4_9

Download citation

Publish with us

Policies and ethics