Comparative Biology of Fungus Cultivation in Termites and Ants

  • Tânia Nobre
  • Corinne Rouland-Lefèvre
  • Duur K. Aanen
Chapter

Abstract

We review the two known mutualistic symbioses between basidiomycete fungi and social insects: the attine ants and macrotermitine termites, comparing their origin, history and patterns of co-evolution, and stability. It is argued that ants are “specialised farmers of unspecialised crops”, whereas termites are “specialised farmers of specialised crops”. Furthermore, despite differences in symmetry and symbiont transmission mode, in both relationships there is a moderate specificity between partners. The unresolved debate about the main role of the symbiotic fungus in the fungus-growing termites is summarised and contrasted with the role in the fungus in attine ants, which is little debated. We compare colony foundation and structure, and the modes of symbiotic interaction between the two groups of social insects, highlighting gaps in our understanding of both systems. Finally, we discuss how these symbioses can be evolutionarily stable and the mechanisms by which the ant and termite symbionts ensure monopolies of host care. We conclude by identifying some lines of future research within the fungus-growing termite symbiosis.

Keywords

Horizontal Transmission Fungal Symbiont Fungus Garden Ambrosia Beetle Asexual Spore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aanen DK (2006) As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biol Lett 2:209–212PubMedCrossRefGoogle Scholar
  2. Aanen DK, de Fine Licht HH, Debets AJM et al (2009) High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326:1103–1106PubMedCrossRefGoogle Scholar
  3. Aanen DK, Eggleton P (2005) Fungus-growing termites originated in African rain forest. Curr Biol 15:851–855PubMedCrossRefGoogle Scholar
  4. Aanen DK, Eggleton P, Rouland-Lefèvre C et al (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci U S A 99:14887–14892PubMedCrossRefGoogle Scholar
  5. Aanen DK, Ros V, de Fine Licht H et al (2007) Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol 7:115PubMedCrossRefGoogle Scholar
  6. Adams RMM, Mueller UG, Holloway AK et al (2000a) Garden sharing and garden stealing in fungus-growing ants. Naturwissenschaften 87:491–493PubMedCrossRefGoogle Scholar
  7. Adams RMM, Mueller UG, Schultz TR, Norden B (2000b) Agro-predation: usurpation of attine fungus gardens by Megalomyrmex ants. Naturwissenschaften 87:549–554PubMedCrossRefGoogle Scholar
  8. Amburgey TL (1979) Review and checklist of the literature on interactions between wood-inhabiting fungi and subterranean termites:1960–1978. Sociobiology 4:279–296CrossRefGoogle Scholar
  9. Anklin-Mühlemann R, Bignell DE, Veivers PC et al (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41:929–940CrossRefGoogle Scholar
  10. Bass M, Cherrett JM (1995) Fungal hyphae as a source of nutrients for the leaf-cutting ant Atta sexdens. Physiol Entomol 20:1–6CrossRefGoogle Scholar
  11. Bathellier J (1927) Contribution à l’ etude systématique et biologique de termites de l’Indo-Chine. Faune Colonies Francaises 1:125–365Google Scholar
  12. Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 189–208Google Scholar
  13. Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 363–387Google Scholar
  14. Bignell DE, Slaytor M, Veivers PC et al (1994) Functions of symbiotic fungus gardens in higher termites of the genus Macrotermes: evidence against the acquired enzyme hypothesis. Acta Microbiol Hung 41:391–401Google Scholar
  15. Boomsma JJ, Aanen DK (2009) Rethinking crop-disease management in fungus-growing ants. Proc Natl Acad Sci U S A 106:17611–17612CrossRefGoogle Scholar
  16. Bot ANM, Rehner SA, Boomsma JJ (2001) Partial incompatibility between ants and symbiotic fungi in two sympatric species of Acromyrmex leaf-cutting ants. Evolution 55:1980–1991PubMedGoogle Scholar
  17. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487CrossRefGoogle Scholar
  18. Cafaro M, Matias J, Currie CR, Cameron R (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51:441–446PubMedCrossRefGoogle Scholar
  19. Chapela IH, Rehner SA, Schultz TR, Mueller UG (1994) Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266:1691–1694PubMedCrossRefGoogle Scholar
  20. Currie CR (2001a) A community of ants, fungi and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380PubMedCrossRefGoogle Scholar
  21. Currie CR (2001b) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B 268:1033–1039CrossRefGoogle Scholar
  22. Currie RC (2001c) Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia 128:99–106CrossRefGoogle Scholar
  23. Currie CR, Mueller UG, Malloch D (1999a) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci U S A 96:7998–8002PubMedCrossRefGoogle Scholar
  24. Currie CR, Scott JA, Summerbell RC, Malloch D (1999b) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704CrossRefGoogle Scholar
  25. Darlington J (1994) Nutrition and evolution in fungus-growing termites. In: Hunt, JH, Nalepa, CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 105–130Google Scholar
  26. D’Ettorre PD, Mora P, Dibangou V, Rouland C, Errard C (2002) The role of the symbiotic fungus in the digestive metabolism of two species of fungus-growing ants. J Comp Physiol B 172:169–176PubMedCrossRefGoogle Scholar
  27. De Fine Licht HH, Andersen A, Aanen DK (2005) Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells. Mycol Res 109:314–318PubMedCrossRefGoogle Scholar
  28. De Fine Licht HH, Boomsma JJ (2010) Forage selection in fungus-growing ants. Ecol Entomol 35:259–269Google Scholar
  29. De Fine Licht HH, Boomsma JJ, Aanen DK (2006) Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis. Mol Ecol 15:3131–3138PubMedCrossRefGoogle Scholar
  30. De Fine Licht HH, Schiøtt M, Mueller UG, Boomsma JJ (2010) Evolutionary transitions in enzyme activity of ant fungus gardens. 64:2055–2067PubMedGoogle Scholar
  31. Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 25–51Google Scholar
  32. Farrell BD, Sequeira AS, O’Meara BC et al (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027PubMedGoogle Scholar
  33. Fletcher JA, Doebeli M (2009) A simple and general explanation for the evolution of altruism. Proc R Soc Lond B 276:13–19CrossRefGoogle Scholar
  34. Frank SA (1996) Host-symbiont conflict over the mixing of symbiotic lineages. Proc R Soc Lond B 263:339–344CrossRefGoogle Scholar
  35. Frøslev TG, Aanen DK, Læssøe T, Rosendahl S (2003) Phylogenetic relationships of Termitomyces and related taxa. Mycol Res 107:1277–1286PubMedCrossRefGoogle Scholar
  36. Grassé P-P, Noirot C (1955) La fondation de nouvelles sociétés par Bellicositermes natalensis Hav. Insect Soc 2:213–220CrossRefGoogle Scholar
  37. Green AM, Mueller UG, Adams RMM (2002) Extensive exchange of fungal cultivars between sympatric species of fungus-growing ants. Mol Ecol 11:191–195PubMedCrossRefGoogle Scholar
  38. Guedegbe HJ, Miambi E, Pando A (2009a) Molecular diversity and host specificity of termite-associated Xylaria. Mycologia 101:686–691PubMedCrossRefGoogle Scholar
  39. Guedegbe HJ, Miambi E, Pando A (2009b) Occurrence of fungi in combs of fungus-growing termites (Isoptera: Termitidae, Macrotermitinae). Mycol Res 113(Pt 10):1039–1045PubMedCrossRefGoogle Scholar
  40. Hart A, Anderson C, Ratnieks F (2002a) Task partitioning in leafcutting ants. Acta Ethologica 5:1–11CrossRefGoogle Scholar
  41. Hart A, Bot A, Brown M (2002b) A colony-level response to disease control in a leaf-cutting ant. Naturwissenschaften 89:275–277PubMedCrossRefGoogle Scholar
  42. Heim R (1977) Termites et champignons. Société nouvelle des Èditions Boubée, ParisGoogle Scholar
  43. Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53PubMedCrossRefGoogle Scholar
  44. Hongoh Y, Ekpornprasit L, Inoue T et al (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516PubMedCrossRefGoogle Scholar
  45. Hyodo F, Inoue T, Azuma JI et al (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658CrossRefGoogle Scholar
  46. Hyodo F, Tayasu I, Inoue T et al (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17:186–193CrossRefGoogle Scholar
  47. Johnson R (1981) Colony development and establishment of the fungus comb in Microtermes sp. nr usambaricus (Sjöstedt) (Isoptera: Macrotermitinae) from Nigeria. Insect Soc 28:3–12CrossRefGoogle Scholar
  48. Johnson RA, Thomas RJ, Wood TG, Swift MJ (1981) The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria. J Nat Hist 15:751–756CrossRefGoogle Scholar
  49. Ju Y-M, Hsieh H-M (2007) Xylaria species associated with nests of Odontotermes formosanus in Taiwan. Mycologia 99:936–957PubMedCrossRefGoogle Scholar
  50. Katoh H, Miura T, Maekawa K et al (2002) Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. Mol Ecol 11:1565–1572PubMedCrossRefGoogle Scholar
  51. Kent DS, Simpson JA (1992) Eusociality in the beetle Austroplatypus incompertus (Coleoptera: Curculionidae). Naturwissenschaften 79:86–87CrossRefGoogle Scholar
  52. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Bigby’s dictionary of the Fungi. CAB International, WallingfordGoogle Scholar
  53. Kirkendall LR, Kent DS, Raffa KF (1997) Interactions among males, females and offspring in bark and ambrosia beetles: the significance of living in tunnels for the evolution of social behavior. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 181–215Google Scholar
  54. Korb J, Aanen DK (2003) The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53:65–71Google Scholar
  55. Kost C, Lakatos T, Böttcher I et al (2007) Non-specific association between filamentous bacteria and fungus-growing ants. Naturwissenschaften 94:821–828PubMedCrossRefGoogle Scholar
  56. Leuthold RH, Badertscher S, Imboden H (1989) The inoculation of newly formed fungus comb with Termitomyces in Macrotermes colonies (Isoptera, Macrotermitinae). Insect Soc 36:328–338CrossRefGoogle Scholar
  57. Little AEF, Currie CR (2007) Symbiotic complexity: discovery of a fifth symbiont in the attine ant microbe symbiosis. Biol Lett 3:501–504PubMedCrossRefGoogle Scholar
  58. Little AEF, Currie CR (2008) Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89:1216–1222PubMedCrossRefGoogle Scholar
  59. Mackenzie LM, Muigai AT, Osir EO et al (2007) Bacterial diversity in the intestinal tract of the fungus-cultivating termite Macrotermes michaelseni (Sjöstedt). Afr J Biotechnol 6:658–667Google Scholar
  60. Martin MM, Martin JS (1978) Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: the role of acquired digestive enzymes. Science 199:1453–1455PubMedCrossRefGoogle Scholar
  61. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161CrossRefGoogle Scholar
  62. Mikheyev AS, Mueller UG, Abbot P (2006) Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. Proc Natl Acad Sci U S A 103:10702–10706PubMedCrossRefGoogle Scholar
  63. Mikheyev AS, Mueller UG, Abbot P (2010) Evolution of the symbiosis between attine ants and their lepiotaceous cultivars. Am Nat 175:E126–E133Google Scholar
  64. Mikheyev AS, Mueller UG, Boomsma JJ (2007) Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi. Mol Ecol 16:209–216PubMedCrossRefGoogle Scholar
  65. Moriya S, Inoue T, Ohkuma M (2005) Fungal community analysis of fungus gardens in termite nests. Microbes Environ 20:243–252CrossRefGoogle Scholar
  66. Mueller UG, Dash D, Rabeling C, Rodrigues A (2008) Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution 62:2894–2912PubMedCrossRefGoogle Scholar
  67. Mueller UG, Gerardo N (2002) Fungus-farming insects: multiple origins and diverse evolutionary histories. Proc Natl Acad Sci U S A 99:15247–15249PubMedCrossRefGoogle Scholar
  68. Mueller UG, Gerardo NM, Aanen DK (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595CrossRefGoogle Scholar
  69. Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038PubMedCrossRefGoogle Scholar
  70. Mueller UG, Schultz TR, Cameron RC (2001) The origin of the attine ant-fungus mutualism. Q Rev Biol 76:169–197PubMedCrossRefGoogle Scholar
  71. Munkacsi AB, Pan JJ, Villesen P (2004) Convergent coevolution in the domestication of coral mushrooms by fungus-growing ants. Proc R Soc Lond B 271:1777–1782CrossRefGoogle Scholar
  72. Nobre T, Eggleton P, Aanen DK (2010) Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proc R Soc Lond B 277:359–365CrossRefGoogle Scholar
  73. O’Fallon B, Hansen T (2008) Population structure, levels of selection, and the evolution of intracellular symbionts. Evolution 62:361–373PubMedCrossRefGoogle Scholar
  74. Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9PubMedGoogle Scholar
  75. Paul J, Saxena S, Varma A (1993) Ultrastructural studies of the termite (Odontotermes obesus) gut microflora and its cellulolytic properties. World J Microbiol Biotechnol 9:108–112CrossRefGoogle Scholar
  76. Pinto-Tomas AA, Anderson MA, Suen G et al (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123PubMedCrossRefGoogle Scholar
  77. Poulsen M, Boomsma JJ (2005) Mutualistic fungi control crop diversity in fungus-growing ants. Science 307:741–744PubMedCrossRefGoogle Scholar
  78. Poulsen M, Fernández-Marín H, Currie CR, Boomsma JJ (2009) Ephemeral windows of opportunity for horizontal transmission of fungal symbionts in leaf-cutting ants. Evolution 63:2235–2247PubMedCrossRefGoogle Scholar
  79. Reynolds HT, Currie CR (2004) Pathogenicity of Escovopsis weberi: the parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96:955–959PubMedCrossRefGoogle Scholar
  80. Richard F-J, Mora P, Errard C, Rouland C (2005) Digestive capacities of leaf-cutting ants and the contribution of their fungal cultivar to the degradation of plant material. J Comp Physiol B 175:297–303PubMedCrossRefGoogle Scholar
  81. Rogers JD, Ju Y-M, Lehmann J (2005) Some Xylaria species on termite nests. Mycologia 97:914–923PubMedCrossRefGoogle Scholar
  82. Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125–134CrossRefGoogle Scholar
  83. Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 289–306Google Scholar
  84. Rouland-Lefèvre C, Bignell DE (2001) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J (ed) Symbiosis. Kluwer Academic Publishers, Dordrecht, pp 731–756Google Scholar
  85. Rouland-Lefèvre C, Inoue T, Johjima T (2006) Termitomyces/termite interactions. In: König, H, Varma, A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 335–350CrossRefGoogle Scholar
  86. Rouland-Lefèvre C, Lenoir F, Lepage M (1991) The role of the symbiotic fungus in the digestive metabolism of several species of fungus-growing termites. Comp Biochem Physiol 99A:657–663CrossRefGoogle Scholar
  87. Scharf M, Wu-Scharf D, Pittendrigh B, Bennett G (2003) Caste- and development-associated gene expression in a lower termite. Genome Biol 4:R62PubMedCrossRefGoogle Scholar
  88. Scharf ME, Wu-Scharf D, Zhou X et al (2005) Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Mol Biol 14:31–44PubMedCrossRefGoogle Scholar
  89. Schiött M, De Fine Licht H, Lange L, Boomsma J (2008) Towards a molecular understanding of symbiont function: identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants. BMC Microbiol 8:40PubMedCrossRefGoogle Scholar
  90. Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci U S A 105:5435–5440PubMedCrossRefGoogle Scholar
  91. Sen R, Ishak HD, Estrada D et al (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci U S A 106:17805–17810PubMedCrossRefGoogle Scholar
  92. Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Biosci Biotechnol Biochem 71:906–915PubMedCrossRefGoogle Scholar
  93. Shinzato N, Muramatsu M, Watanabe Y, Matsui T (2005) Termite-regulated fungal monoculture in fungus combs of a macrotermitine termite Odontotermes formosanus. Zool Sci 22:917–922PubMedCrossRefGoogle Scholar
  94. Slaytor M (1992) Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp Biochem Physiol 103B:775–784Google Scholar
  95. Taylor PD, Frank SA (1996) How to make a kin selection model. J Theor Biol 180:27–37PubMedCrossRefGoogle Scholar
  96. Thomas RJ (1987a) Distribution of Termitomyces and other fungi in the nests and major workers of several Nigerian Macrotermitinae. Soil Biol Biochem 19:335–341CrossRefGoogle Scholar
  97. Thomas RJ (1987b) Distribution of Termitomyces Heim and other fungi in the nests and major workers of Macrotermes bellicosus (Smeathman) in Nigeria. Soil Biol Biochem 19:29–333Google Scholar
  98. Thomas RJ (1987c) Distribution of Termitomyces Heim and other fungi in the nests and major workers of several Nigerian Macrotermitinae. Soil Biol Biochem 19:335–341CrossRefGoogle Scholar
  99. Thomas RJ (1987d) Factors affecting the distribution and activity of fungi in the nests of Macrotermitinae (Isoptera). Soil Biol Biochem 19:343–349CrossRefGoogle Scholar
  100. Todaka N, Moriya S, Saita K et al (2007) Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol 59:592–599PubMedCrossRefGoogle Scholar
  101. Veivers PC, Mühlemann R, Slaytor M et al (1991) Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sjøstedt. J Insect Physiol 37:675–682CrossRefGoogle Scholar
  102. Visser AA, Ros V, Beer ZWD et al (2009) Levels of specificity of Xylaria species associated with fungus-growing termites: a phylogenetic approach. Mol Ecol 18:553–567PubMedCrossRefGoogle Scholar
  103. Vo TL, Mueller UG, Mikheyev AS (2009) Free-living fungal symbionts (Lepiotaceae) of fungus-growing ants (Attini: Formicidae). Mycologia 101:206–210PubMedCrossRefGoogle Scholar
  104. Walker TN, Hughes WOH (2009) Adaptive social immunity in leaf-cutting ants. Biol Lett 5:446–448PubMedCrossRefGoogle Scholar
  105. Warnecke F, Luginbuhl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565PubMedCrossRefGoogle Scholar
  106. Weber NA (1972) Gardening ants: the attines. American Philosophical Society, Philadelphia, PAGoogle Scholar
  107. Wetterer JK (1994) Nourishment and evolution in fungus-growing ants and their fungi. In: Hunt, JH, Nalepa, CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 309–328Google Scholar
  108. Wilkinson DM (2001) At cross purposes. Nature 412:485–485PubMedCrossRefGoogle Scholar
  109. Wilson EO (1980) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta): I. The overall pattern in A. sexdens. Behav Ecol Sociobiol 7:143–156CrossRefGoogle Scholar
  110. Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, UK, pp 245–292Google Scholar
  111. Yanagawa A, Yokohari F, Shimizu S (2008) Defense mechanism of the termite, Coptotermes formosanus Shiraki, to entomopathogenic fungi. J Invertebr Pathol 97:165–170PubMedCrossRefGoogle Scholar
  112. Yara K, Jahana K, Hayashi H (1989) In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae: Macrotermitinae). Sociobiology 15:2247–2260Google Scholar
  113. Zhou X, Smith JA, Oi FM (2007) Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395:29–39PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  • Tânia Nobre
    • 1
  • Corinne Rouland-Lefèvre
    • 2
  • Duur K. Aanen
    • 1
  1. 1.Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
  2. 2.Institut de recherche pour le développementUnité de recherche Biodiversité et fonctionnement du solBondy CedexFrance

Personalised recommendations