Skip to main content

An Introduction to Termites: Biology, Taxonomy and Functional Morphology

  • Chapter
  • First Online:
Biology of Termites: a Modern Synthesis

Abstract

Termites are fully social insects, with an extraordinary range of morphological forms. It is now clearly established that they are a very specialised form of cockroach, with far more complex social systems than other cockroaches, and with a far wider range of diets. Termites all live in colonies, with reproductives (kings, queens, and nymphs), soldiers and “helpers” (true workers and also immature stages that assist within the colony to some extent). Termite morphological and anatomical adaptations are caste-specific, with structures evolving independently in reproductives (to allow dispersal, pair bonding and fecundity), workers (foraging and feeding, tending and feeding of immatures, nest construction) and soldiers (only defence). The modifications seen in termite societies are similar to those found in the somatic parts of multicellular organisms, leading to the idea that a termite colony is best thought of as a single organism (or, more controversially, a “superorganism”). The structures that termites build, the mounds and nests, might also be defined as part of this organism. Mounds and nests contribute greatly to the well-being of termite colonies by providing shelter, fortifications and climate control. Overall, termites have amongst the most complex social, anatomical and structural adaptations of any animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Marais’s work first appeared in a series of magazine articles in the early 1920s, and was published as a book (Die Siel van die Mier) in 1937, a year after his death. Modern editions in English have been published by Penguin Books, and most recently by New York University Press and by Osiran Books. The text is widely available. A similar work (The Life of the White Ant) produced in 1927 by Maurice Maeterlinck (George Allen and Unwin Ltd) is now considered to plagiarise Marais’s ideas.

References

  • Backwell LR, d’Errico F (2001) Evidence of termite foraging by Swartkrans early hominids. Proc Natl Acad Sci U S A 98:1358–1363

    Article  PubMed  CAS  Google Scholar 

  • Boomsma JJ (2009) Lifetime monogamy and the evolution of eusociality. Philos Trans R Soc Lond B Biol Sci 364:3191–3207

    Article  PubMed  Google Scholar 

  • Cribb BW, Stewart A, Huang H, et al (2008) Unique zinc mass in mandibles separates drywood termites from other groups of termites. Naturwissenschaften 95:433–441

    Article  PubMed  CAS  Google Scholar 

  • Crosland, MWJ, Su, N-Y, Scheffrahn, RH (2005) Arolia in termites (Isoptera): functional significance and evolutionary loss. Insectes Soc, 52:63–66

    Article  Google Scholar 

  • Das I, Coe M (1994) Dental morphology and diet in anuran amphibians from South India. J Zool 233:417–427

    Article  Google Scholar 

  • Davies RG, Eggleton P, Jones DT, et al (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–877

    Article  Google Scholar 

  • De Visser SN, Freymann BP, Schnyder H (2008) Trophic interactions among invertebrates in termitaria in the African savanna: a stable isotope approach. Ecol Entomol 33:758–764

    Google Scholar 

  • Dial KP, Vaughan TA (1987) Opportunistic predation on alate termites in Kenya. Biotropica 19:185–187

    Article  Google Scholar 

  • Donovan SE (2002) A morphological study of the enteric valves of the Afrotropical Apicotermitinae (Isoptera: Termitidae). J Nat Hist 36:1823–1840

    Article  Google Scholar 

  • Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366

    Article  Google Scholar 

  • Donovan SE, Jones DT, Sands WA, Eggleton P (2000) The morphological phylogenetics of termites (Isoptera). Biol J Linn Soc 70:467–513

    Article  Google Scholar 

  • Eggleton P, Beccaloni G, Inward D (2007) Save Isoptera: a comment on Inward et al. – response to Lo et al. Biol Lett 3:564–565

    Article  Google Scholar 

  • Eggleton P, Bignell DE, Sands WA, et al (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos Trans R Soc Lond B Biol Sci 351:51–68

    Article  Google Scholar 

  • Emerson AE (1965) A review of the Mastotermitidae (Isoptera), including a new fossil genus from Brazil. Am Mus Novit 2236:1–46

    Google Scholar 

  • Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novit 3650:1–27

    Article  Google Scholar 

  • Higashi M, Abe T, Burns TP (1992) Carbon-nitrogen balance and termite ecology. Proc R Soc Lond B Biol Sci 249:303–308

    Article  Google Scholar 

  • Holldobler B, Wilson EO (2009) The superorganism: the beauty, elegance, and strangeness of insect societies. W. W. Norton, New York, NY and London, 522 pp

    Google Scholar 

  • Holmgren N (1909) Termitenstudien I. Anatomische Untersuchungen. Klg Svenska Vetenskapsakad Handl 44:1–215

    Google Scholar 

  • Holt JA, Lepage M (2000) Termites and soil properties. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publisher, Dordrecht, pp 389–407

    Google Scholar 

  • Hyodo F, Tayasu L, Konaté S, et al (2008) Gradual enrichment of 15N with humification in a below-ground food web: relationship between 15N and diet age determioned using 14C. Funct Ecol 22:516–522

    Article  Google Scholar 

  • Inward D, Beccaloni G, Eggleton P (2007a) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335

    Article  PubMed  CAS  Google Scholar 

  • Inward DJG, Vogler P, Eggleton P (2007b) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967

    Article  PubMed  CAS  Google Scholar 

  • Jaffe K, Ramos C, Issa S (1995) Trophic interactions between ants and termites that share common cests. Ann Entomol Soc Am 88:328–333

    Google Scholar 

  • Jeschke JM, Tollrian R (2007) Prey swarming: which predators become confused and why? Anim Behav 74:387–393

    Article  Google Scholar 

  • Ji R, Brune A (2005) Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem 37:1648–1655

    Article  CAS  Google Scholar 

  • Ji R, Brune A (2006) Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78:267–283

    Article  Google Scholar 

  • Kambhampati S, Eggleton P (2000) Taxonomy and phylogrny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 1–23

    Google Scholar 

  • Koepfli KP, Jenks SM, Eizirik E, et al (2006) Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Mol Phylogenet Evol 38:603–620

    Article  PubMed  CAS  Google Scholar 

  • Korb J (2003) Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90:212–219

    PubMed  CAS  Google Scholar 

  • Korb J (2008) Termites, hemimetabolous diploid white ants? Front Zool 5:15

    Article  PubMed  Google Scholar 

  • Korb J, Linsenmair KE (2000) Ventilation of termite mounds: new results require a new model. Behav Ecol 11:486–494

    Article  Google Scholar 

  • Leal IR, Oliveira PS (1995) Behavioral ecology of theneotropical termite hunting ant Pachycondyla (=Termitopone) marginata – colony founding, group-raiding and migratory patterns. Behav Ecol Sociobiol 37:373–383

    Article  Google Scholar 

  • Legendre F, Whiting MF, Bordereau C, et al (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48:615–627

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Engel MS, Cameron S, et al (2007) Save Isoptera: a comment on Inward et al. Biol Lett 3:562–563

    Article  PubMed  Google Scholar 

  • Longrich NR, Currie PJ (2009) Albertonykus borealis, a new alvarezsaur (Dinosauria: Theropoda) from the Early Maastrichtian of Alberta, Canada: implications for the systematics and ecology of the Alvarezsauridae. Cretaceous Res 30:239–252

    Article  Google Scholar 

  • Luo ZX, Wible JR (2005) A late Jurassic digging mammal and early mammalian diversification. Science 308:103–107

    Article  PubMed  CAS  Google Scholar 

  • Luscher M (1951) Air-conditioned nests. Sci Am 205:138–145

    Article  Google Scholar 

  • Martius C, Bandeira AG, da Silva Medeiros LG (1996) Variation in termite alate swarming in rain forests of central Amazonia. Ecotropica 2:1–11

    Google Scholar 

  • Matsuura K (2002) Colony-level stabilization of soldier head width for head-plug defense in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Behav Ecol Sociobiol 51:172–179

    Article  Google Scholar 

  • Mitchell JD (2007) Swarming and pairing in the fungus-growing termite, Macrotermes natalensis (Haviland) (Isoptera: Macrotermitinae). Afr Entomol 15:153–160

    Article  Google Scholar 

  • Miura T, Matsumoto T (1998) Foraging organization of the open-air processional lichen-feeding termite Hospitalitermes (Isoptera, termitidae) in Borneo. Insectes Soc 45:17–32

    Article  Google Scholar 

  • Morrow EH (2004) How the sperm lost its tail: the evolution of aflagellate sperm. Biol Rev 79:795–814

    Article  PubMed  Google Scholar 

  • Nalepa CA, Lenz M (2000) The ootheca of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae): homology with cockroach oothecae. Proc R Soc Lond B Biol Sci 267:1809–1813

    Article  CAS  Google Scholar 

  • Noirot C (2001) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. Higher termites (Termitidae). Ann Soc Entomol Fr 37:431–471

    Google Scholar 

  • Noirot C, Pasteels JM (1987) Ontogenic development and evolution of the worker caste in termites. Experientia 43:851–860

    Article  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient biorecycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    PubMed  CAS  Google Scholar 

  • Perna A, Jost C, Couturier E (2008) The structure of gallery networks in the nests of termite Cubitermes spp. revealed by X-ray tomography. Naturwissenschaften 95:877–884

    Article  PubMed  CAS  Google Scholar 

  • Prestwich GD (1984) Defense-mechanisms of termites. Annu Rev Entomol 29:201–232

    Article  CAS  Google Scholar 

  • Riparbelli MG, Callaini G, Mercati D, et al (2009) Centrioles to basal bodies in the spermiogenesis of Mastotermes darwiniensis (Insecta, Isoptera). Cell Motil Cytoskeleton 66:248–259

    Article  PubMed  Google Scholar 

  • Roisin Y (2001) Caste sex ratios, sex linkage, and reproductive strategies in termites. Insectes Soc 48:224–230

    Article  Google Scholar 

  • Roux EA, Roux M, Korb J (2009) Selection on defensive traits in a sterile caste – caste evolution: a mechanism to overcome life-history trade-offs? Evol Dev 11:80–87

    Article  PubMed  Google Scholar 

  • Ruggiero RG, Fay FM (1994) Utilization of termitarium soils by elephants and its ecological implications. Afri J Ecol 32:222–232

    Article  Google Scholar 

  • Sands WA (1982) Agonistic behavior of African soldierless Apicotermitinae (Isoptera, Termitidae). Sociobiology 7:61–72

    Google Scholar 

  • Sands WA (1998) The identification of worker castes of termite genera from soil of African and the Middle East. CAB International, Wallingford, CT

    Google Scholar 

  • Santos CA, Costa-Leonard AM (2006) Anatomy of the frontal gland and ultramorphology of the frontal tube in the soldier caste of species of Nasutitermitinae (Isoptera, Termitidae). Microsc Res Tech 69:913–918

    Article  PubMed  Google Scholar 

  • Scholtz OI, Macleod N, Eggleton P (2008) Termite soldier defence strategies: a reassessment of Prestwich’s classification and an examination of the evolution of defence morphology using extended eigenshape analyses of head morphology. Zool J Linn Soc Lond 153:631–650

    Article  Google Scholar 

  • Suzuki S, Kuroda S, Nishihara T (1995) Tool-set for termite-fishing by chimpanzees in the Ndoki Forest, Congo. Behaviour 132:219–235

    Article  Google Scholar 

  • Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci U S A 100:12808–12813

    Article  PubMed  CAS  Google Scholar 

  • Turner JS, Soar RM (2008) Beyond biomimicry. What termites can tell us about realizing the living building. Proceedings of the First International Conference on Industrialized, Intelligent Construction (I3CON) 1: 1–18

    Google Scholar 

  • Ware JL, Litman J, Klass KD, Spearman LA (2008) Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology. Syst Entomol 33:429–450

    Article  Google Scholar 

  • Weesner F (1965) The termites of the United States. The National Pest Control Association, Elizabeth, NJ, 70 pp

    Google Scholar 

  • Weesner F (1970) External anatomy. In: Krishna K, Weesner F (eds) Biology of termites, vol I. Academic Press, New York, NY, pp 1–23

    Google Scholar 

  • Wilson EO (1992) The effects of complex social-life on evolution and biodiversity. Oikos 63:13–18

    Article  CAS  Google Scholar 

  • Yarnell RW, Metcalfe DJ, Dunstone N, et al (2008) The impact of fire on habitat use by the short-snouted elephant shrew (Elephantulus brachyrhynchus) in North West Province, South Africa. Afr Zool 43:45–52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Eggleton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Eggleton, P. (2010). An Introduction to Termites: Biology, Taxonomy and Functional Morphology. In: Bignell, D., Roisin, Y., Lo, N. (eds) Biology of Termites: a Modern Synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4_1

Download citation

Publish with us

Policies and ethics