Socio-scientific Views on Environment and Health as Challenges to Science Education



Environment and health are interlinked areas that are generating increasing interest and relevance in view of achieving a sustainable society. This is the main argument for increased emphasis on environmental and health issues in science education. However, beyond this foreground goal, environment and health problems provide a background of opportunities to ask questions about the nature and role of science in society. From a positivist technical perspective, environment and health are well-defined measurable resources or states that can be controlled by well-educated individuals. Environmental and health education and related research approaches have, for a certain time, followed this line. From a socio-scientific perspective, the potential of environmental and health issues lies in searching beyond the surface: What notions of environment and health can be identified, how are they represented in society, and how are they represented in science? How do members of society, such as citizens, politicians, and scientists, come to know about what matters in current and future environmental and health developments? And what concepts do people have about how environmental and health problems might be approached? Such questions illustrated by examples and related research approaches are challenges for a socio-scientific orientation in science teaching.


Science Education Scientific Knowledge Science Teacher Scientific Finding Environmental Education 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albe, V. (2007). Students’ Argumentation in Group Discussions on a Socio-Scientific Issue. In R. Pinto & D. Couso (Eds.), Contributions from Science education research (pp. 389–401). Berlin: Springer.CrossRefGoogle Scholar
  2. Bilharz, M., & Gräsel, C. (2006). Gewusst wie: Strategisches Umwelthandeln als Ansatz zur Förderung ökologischer Kompetenz in Schule und Weiterbildung. Bildungsforschung, 3(1), [].
  3. Elster, D. (2005). Was macht naturwissenschaftlichen Unterricht für Mädchen und Buben interessant? In Österreichisches Zentrum für Begabtenförderung und Begabtenforschung (Hrsg.), Die Forscher/innen von morgen (pp. 153–161). Innsbruck: Studienverlag.Google Scholar
  4. Gillis, J. (2011). A scientist, his work and a climate reckoning. Slowing the runaway train of greenhouse gas emissions. New York Times, Monday, 3. January. Copyright by Tages Anzeiger, pp. 1, 4.Google Scholar
  5. Gräsel, C. (1999). Die Rolle des Wissens beim Umwelthandeln–oder: Warum Umweltwissen träge ist. Unterrichtswissenschaft, 27, 196–212.Google Scholar
  6. Gräsel, C. (2009). Umweltbildung. In R. Tippelt & B. Schmidt (Hrsg.), Handbuch Bildungsforschung (2., überarbeitete und erweiterte Auflage, S. 845–860). Wiesbaden: Verlag für Sozialwissenschaften.Google Scholar
  7. Häberli, R., Gasser, R., Grossenbacher-Mansuy, W., & Lehmann Pollheimer, D. (2002). Vision Lebensqualität: Nachhaltige Entwicklung – Ökologisch notwendig, wirtschaftlich klug, gesellschaftlich möglich. Schlussbericht Schwerpunktprogramm Umwelt. Zürich: Hochschulverlag.Google Scholar
  8. Heimlich, J. E., & Ardoin, N. M. (2008). Understanding behavior to understand behavior change: a literature review. Environmental Education Research, 14(3), 215–237.CrossRefGoogle Scholar
  9. Hines, J. M., Hungerford, H. R., & Tomera, A. N. (1986/1987). Analysis and synthesis of research on responsible environmental behavior: a meta-analysis. The Journal of Environmental Education, 18(2), 1–8.CrossRefGoogle Scholar
  10. HSGYM – Hochschule und Gymnasium. Hochschulreife und Studierfähigkeit. Zürcher Analysen und Empfehlungen zur Schnittstelle. Zürich: |
  11. Hungerford, H. R., & Volk, T. L. (1990). Changing learner behavior through envirnomental education. The Journal of Environmental Education, 21(3), 8–22.Google Scholar
  12. Jensen, B. B., & Schnack, K. (2006). The Action Competence Approach in Environmental Education. Environmental Education Research, 12(3–4), 471–486.CrossRefGoogle Scholar
  13. Jones, G. M., Howe, A., & Rua, M. J. (2000). Gender differences in students’ experiences, interests, and attitudes toward science and scientists. Science Education, 84(2), 180–192.CrossRefGoogle Scholar
  14. Krüger, T. (2008). Die Entdeckung der Eiszeiten. Internationale Rezeption und Konsequenzen für das Verständnis der Klimageschichte. Basel: Schwabe.Google Scholar
  15. Kyburz-Graber, R., Hofer, K., & Wolfensberger, B. (2006). Studies on a socio-ecological approach to environmental education: A contribution to a critical position in the education for sustainable development discourse. Environmental Education Research, 12(1), 101–114.CrossRefGoogle Scholar
  16. Kyburz-Graber, R., Rigendinger, L., Hirsch Hadorn, G., & Werner Zentner, K. (1997). A socio-ecological approach to interdisciplinary environmental education in senior high schools. Environmental Education Research, 3(1), 17–28.CrossRefGoogle Scholar
  17. Levinson, R. (2007). Towards a pedagogical framework for the teaching of controversial socio-scientific issues to secondary school students in the age range 14–19. Ph.D. thesis. Institute of Education, University of London.Google Scholar
  18. Osborne, J. (2007). Engaging young people with science: Thoughts about future direction of science education. In C. Linder, L. Östman, & P.-O. Wickman (Eds.), Promoting scientific literacy: science education research in transaction (pp. 105–112). Proceedings of the Linnaeus Tercentenary Symposium held at Uppsala University, Uppsala, Sweden, May 28–29, 2007. Uppsala: Geotryckeriet.Google Scholar
  19. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.CrossRefGoogle Scholar
  20. Pfister, Ch. (2010a). The “1950s Syndrome” and the transition from a slow-going to a rapid loss of global sustainability. In F. Uekötter (Ed.), The turning points of environmental history. University of Pittsburgh Press: Pittsburgh.Google Scholar
  21. Pfister, Ch. (2010b). Le débat sur les gaz à effet de serre – le dû des scientifiques. ProClim-Flash, 48, 3.Google Scholar
  22. Ratcliffe, M. (2009). The place of socio-scientific issues in citizenship education. In A. Ross (Ed.), Human rights and citizenship education (pp. 12–16). London: CiCe.Google Scholar
  23. Robottom, I. (2003). Shifts in understanding environmental education. In R. Kyburz-Graber, P. Posch, & U. Peter (Eds.), Challenges in teacher education. Interdisciplinarity and environmental education (pp. 34–40). Wien: Studienverlag.Google Scholar
  24. Sauvé, L., Berryman, T., & Brunelle, R. (2003). Environnement et développement: la culture de la filière ONU. Education relative à l’environnement, Regards, Recherches, Réflexions, 4, 33–55.Google Scholar
  25. Schlüter, K., & Kyburz-Graber, R. (2000). Ansichten der Lehrerbildnerinnen und Lehrerbildner zur Umweltbildung. In U. Nagel, C. Bachmann-Affolter, & D. Högger (Hrsg.), Innovation durch Umweltbildung. Potentiale eines interdisziplinären Studienbereichs in der neuen Lehrerinnen- und Lehrerbildung (pp. 58–66). Zürich: Pestalozzianum.Google Scholar
  26. Seybold, H., & Nikel, J. (2006). Special Issue: Environmental education in three German-speaking countries: research perspectives and recent developments. Environmental Education Research, 12(1).Google Scholar
  27. Sia, A. P., Hungerford, H. R., & Tomera, A. N. (1985/86). Selected predictors of responsible environmental behaviour. The Journal of Environmental Education, 17(2), 31–40.CrossRefGoogle Scholar
  28. Simonneaux, L. (2007). Argumentation in socio-scientific contexts. In S. Erduran & M. P. Jiménes-Aleixandre (Eds.), Argumentation in science (pp. 179–199). Berlin: Springer.CrossRefGoogle Scholar
  29. Stein, D. K. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291–310.CrossRefGoogle Scholar
  30. Stevenson, R. (1987). Schooling and environmental education: Contradictions in purpose and practice. In I. Robottom (Ed.), Environmental education: Practice and possibility (pp. 69–82). Geelong, Victoria, Australia: Deakin University Press.Google Scholar
  31. Stevenson, R. (2007). Schooling and environmental/sustainability education: From discourses of policy and practice to discourses of professional learning. Environmental Education Research, 13(2), 265–285.CrossRefGoogle Scholar
  32. Strobl, G. (2008). Naturwissenschaftliche Bildung und die Debatte um Scientific Literacy. In K. P. Ohly & G. Strobl (Hrsg.). Naturwissenschaftliche Bildung. Konzepte und Praxisbeispiele für die Oberstufe (pp. 46–59). Weinheim: Beltz.Google Scholar
  33. UNESCO United Nations Education, Scientific and Cultural Organization. (2005). United nations decade of education for sustainable development 2005–2014. Draft international implementation scheme. Paris: UNESCO.Google Scholar
  34. UNESCO-UNEP United Nations Education, Scientific and Cultural Organization – United Nations Environmental Programme. (1978). Final report intergovernmental conference on environmental education, Tbilisi 1977. Paris: UNESCO-UNEP.Google Scholar
  35. Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing Reflective Judgment through Socioscientific Issues. Research in Science Teaching, 46(1), 74–101.CrossRefGoogle Scholar
  36. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357–377.CrossRefGoogle Scholar
  37. ZHSF. (2009). Expertise zu Naturwissenschaft und Technik in der Allgemeinbildung im Kanton Zürich. Zürich: Bildungsdirektion.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of EducationUniversity of ZurichZurichSwitzerland

Personalised recommendations