Pseudomonas pp 201-233 | Cite as

Pyoverdine Siderophores as Taxonomic and Phylogenic Markers

Chapter

Abstract

A total of 638 fluorescent Pseudomonas strains, representing 64 different species, have been analyzed through siderotyping. Altogether, the data allow considering pyoverdine, the fluorescent pigment and siderophore, which characterizes these species, as a very powerful taxonomic marker. Pyoverdine characterization through isoelectrophoresis and iron transport capacity allows an easy and rapid identification at the species level of most strains without the need of any other phenotypic or genomic identification tests. Moreover, the comparison of the 63 pyoverdine molecular structures, which are presently fully determined, allows the identification of groups of structurally closely related pyoverdines, which producer strains correspond to highly phylogenetically related strains. Thus, pyoverdines, as taxonomic as well as phylogenic markers, are molecules of great importance for the characterization and a better knowledge of the fluorescent Pseudomonas.

Keywords

Iron Uptake Peptide Chain Amide Form rpoB Sequencing Present Chapter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author deeply acknowledges the many collaborators who participated to the siderotyping development, especially Christelle Gruffaz and Gérard Seyer for their technical expertise and their valuable participation to student formation. W. Achouak, U. Behrendt, H. Budzikiewicz, B. Cámara, M. Champomier, J. Chun, P. Cornelis, J. Djacs, J.F. Fernández-Garayzábal, M. Fischer-LeSaux, L. Gardan, D. Haas, D. Izard, S.W. Kwon, E. Lang, P. Lemanceau, P. Munsch, A. Peix, S. Shivaji, J. Sikorski, L. Tvrzová are acknowledged for the gift of strains.

References

  1. 1.
    Elliot, R.P. (1958) Some properties of pyoverdine, the water-soluble pigment of the Pseudomonas. Appl. Microbiol. 6: 241–246.Google Scholar
  2. 2.
    King, E.O., Ward, M.K. and Raney, D.F. (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301–307.PubMedGoogle Scholar
  3. 3.
    Meyer, J.-M., Gruffaz, C. and Fischer-LeSaux, M. (2008) Siderotyping, a straightforward tool to identify soil and plant-related pseudomonads, pp. 369–382. In C.S. Nautiyal and P. Dion, (ed.), Molecular mechanisms of plant and microbe coexistence. Soil Biology 15. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  4. 4.
    Budzikiewicz, H. (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Prog. Chem. Org. Nat. Prod. 87: 81–235.Google Scholar
  5. 5.
    Cornelis, P. and Matthijs, S. (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4: 787–798.PubMedGoogle Scholar
  6. 6.
    Meyer, J.-M. (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch. Microbiol. 174: 135–142.PubMedGoogle Scholar
  7. 7.
    Meyer, J.-M. and Abdallah, M.A. (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physico-chemical properties. J. Gen. Microbiol. 107: 319–328.Google Scholar
  8. 8.
    Meyer, J.-M. and Hornsperger., J.-M. (1978) Role of pyoverdinePf, the iron-binding fluorescent pigment of Pseudomonas fluorescens, in iron transport. J. Gen. Microbiol. 107: 329–331.Google Scholar
  9. 9.
    Guillot, E. and Leclerc, H. (1993) Bacterial flora in natural mineral waters: characterization by ribosomal ribonucleic acid gene restriction patterns. Syst. Appl. Microbiol. 16: 483–493.Google Scholar
  10. 10.
    Regenhardt, D., Heuer, H., Heim, S., Fernandez, D.U., Strömpl, C., Moore, E.R.B. and Timmis, K.N. (2002) Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ. Microbiol. 4: 912–915.PubMedGoogle Scholar
  11. 11.
    Haas, D. and Keel, C. (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41: 117–153.PubMedGoogle Scholar
  12. 12.
    Brodhagen, M., Henkels, M.D. and Loper, J.E. (2004) Positive regulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 70: 1758–1766.PubMedGoogle Scholar
  13. 13.
    Bailey, M.J., Lilley, A.K., Thompson, I.P., Raynay, P.B. and Ellis, R.J. (1995) Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Mol. Ecol. 4: 755–763.PubMedGoogle Scholar
  14. 14.
    Geels, P. and Schippers, B. (1983) Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. J. Phytopathol. 108: 193–206.Google Scholar
  15. 15.
    Bossis, E., Lemanceau, P., Latour, X. and Gardan, L. (2000) The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie 20: 51–63.Google Scholar
  16. 16.
    Brosch, R., Lefèvre, M., Grimont, F. and Grimont, P.A.D. (1996) Taxonomic diversity of pseudomonads revealed by computer-interpretation of ribotyping data. Syst. Appl. Microbiol. 19: 541–555.Google Scholar
  17. 17.
    Grimont, P.A.D., Vancanneyt, M., Lefèvre, M., Vandermeulebroecke, K., Vauterin, L., Brosch, R., Kersters, K. and Grimont, F. (1996) Ability of Biolog and Biotype-100 systems to reveal the taxonomic diversity of the pseudomonads. Syst. Appl. Microbiol. 19: 510–527.Google Scholar
  18. 18.
    Palleroni, N.J. (1984) Genus I. Pseudomonas Migula 1894, pp. 141–199. In N.R. Krieg, and J.G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology, Vol. 1. Williams and Wilkins, Baltimore.Google Scholar
  19. 19.
    Palleroni, N.J. (2005) Genus I. Pseudomonas, pp. 323–379. Bergey’s Manual of Systematic Bacteriology. Part B. The gammaproteobacteria. Springer, New York.Google Scholar
  20. 20.
    Stanier, R.Y., Palleroni, N.J. and Doudoroff, M. (1966) The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43: 159–271.PubMedGoogle Scholar
  21. 21.
    Gardan, L., Bella, P., Meyer, J.-M., Christen, R., Rott, P., Achouak, W. and Samson, R. (2002) Pseudomonas salomonii sp. nov., pathogenic on garlic, and Pseudomonas palleroniana sp. nov., isolated from rice. Int. J. Syst. Evol. Microbiol. 52: 2065–2074.PubMedGoogle Scholar
  22. 22.
    Lalucat, J., Bennasar, A., Bosch, R., Garcia-Valdès, E. and Palleroni, N.J. (2006) Biology of Pseudomonas stutzeri. Microbiol. Mol. Biol. Rev. 70: 510–547.PubMedGoogle Scholar
  23. 23.
    Mulet, M., Gomila, M., Gruffaz, C., Meyer, J.-M., Palleroni, N.J., Lalucat, J. and García-Valdés, E. (2008) Phylogenetic analysis and siderotyping as useful tools in the taxonomy of Pseudomonas stutzeri: description of a new genomovar. Int. J. Syst. Evol. Microbiol. 58: 2309 – 2315.PubMedGoogle Scholar
  24. 24.
    Vandamme, P., Pot, B., Gillis., M., De Vos, P., Kersters, K. and Swings, J. (1996) Polyphasic taxonomy : a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407–438.PubMedGoogle Scholar
  25. 25.
    Palleroni, N.J. and Moore, E.R.B. (2004) Taxonomy of pseudomonads: experimental approaches, pp. 3–44. In J.-L. Ramos (ed.), Pseudomonas. Kluwer Academic/Plenum Publishers, New York.Google Scholar
  26. 26.
    Anzai, Y., Kim, H., Park, J.-Y., Wakabayashi, H. and Oyaizu, H. (2000) Phylogenic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50: 1563–1589.PubMedGoogle Scholar
  27. 27.
    Kersters, K., Ludwig, W., Vancanneyt, M., Devos, P., Gillis, M. and Schleifer, K.H. (1996) Recent changes in the classification of pseudomonads: an overview. Syst. Appl. Microbiol. 19: 465–477.Google Scholar
  28. 28.
    Moore, E.R.B., Mau, M., Arnscheidt, A., Böttger, E.C., Hutson, R.A., Collins, M.D., Van De Peer, Y., De Watcher, R. and Timmis, K.N. (1996) The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst. Appl. Microbiol. 19: 478–492.Google Scholar
  29. 29.
    Palleroni, N.J., Kunisawa, R., Contopoulos, R. and Doudoroff, M. (1973) Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23: 333–339.Google Scholar
  30. 30.
    Ait Tayeb, L., Ageron, E., Grimont, F. and Grimont, P.A.D. (2005) Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res. Microbiol. 156: 763–773.PubMedGoogle Scholar
  31. 31.
    Frapolli, M., Défago, G. and Moënne-Loccoz, Y. (2007) Multilocus sequence analysis of biocontrol fluorescent Pseudomonas spp. producing the antifungal compound 2,4-diacetylphloroglucinol. Environ. Microbiol. 9: 1939–1955.PubMedGoogle Scholar
  32. 32.
    Hilario, E., Buckley, T.R. and Young, J.M. (2004) Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, carA, recA and 16S rDNA. Antonie van Leeuwenkoek 86: 51–64.Google Scholar
  33. 33.
    Yamamoto, S., Kasai, H., Arnold, D.L., Jackson, R.W., Vivian, A. and Harayama, S. (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146: 2385–2394.PubMedGoogle Scholar
  34. 34.
    Meyer, J.-M., Stintzi, A., De Vos, D., Cornelis, P., Tappe, R., Taraz, K. and Budzikiewicz, H. (1997) Use of siderophores to type pseudomonads : the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143: 35–43.PubMedGoogle Scholar
  35. 35.
    Michels, J., Benoni, H., Briskot, G., Lex, J., Schmickler, H., Taraz, K., Budzikiewicz, H., Korth, H. and Pulverer, G. (1991) Isolierung und spektroskopische Charakteriezirung des Pyoverdin-Chromophors sowie seines 5-Hydroxy-Analogen. Z. Naturforsch. 46c: 993–998.Google Scholar
  36. 36.
    Jacques, P., Gwose, I., Seinsche, D., Taraz, K., Budzikiewicz, H., Schröder, H., Ongena, M. and Thonart, P. (1993) Isopyoverdin Pp BTP1, a biogenetically interesting novel siderophore from Pseudomonas putida. Nat. Prod. Lett. 3: 213–220.Google Scholar
  37. 37.
    Teintze, M., Hossain, M.B., Barnes, C.L., Leong, J. and van der Helm, D. (1981) Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochemistry 20: 6446–6457.PubMedGoogle Scholar
  38. 38.
    Meyer, J.-M., Gruffaz, C., Raharinosy, V., Bezverbnaya, I., Schäfer, M. and Budzikiewicz, H. (2008) Siderotyping of fluorescent Pseudomonas : molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21: 259–271.PubMedGoogle Scholar
  39. 39.
    Fuchs, R., Schäfer, M., Geoffroy, V. and Meyer, J.-M. (2001) Siderotyping – a powerful tool for the characterization of pyoverdines. Curr. Topics Med. Chem. 1: 31–57.Google Scholar
  40. 40.
    Koedam, N., Wittouck, E., Gaballa, A., Gillis, A., Höfte, M. and Cornelis, P. (1994) Detection and differentiation of microbial siderophores by isoelectric focusing and chrome azurol S overlay. Biometals 7: 287–291.PubMedGoogle Scholar
  41. 41.
    Hohnadel, D. and Meyer, J.-M. (1988) Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. J. Bacteriol. 170: 4865–4873.PubMedGoogle Scholar
  42. 42.
    Meyer, J.-M., Gruffaz, C., Tulkki, T. and Izard, D. (2007) Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as Pseudomonas putida. Int. J. Syst. Evol. Microbiol. 57: 2543–2556.PubMedGoogle Scholar
  43. 43.
    Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., Boccard, F. and Lemaitre, B. (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc. Nat. Acad. Sci. 102: 11414–11419.PubMedGoogle Scholar
  44. 44.
    Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barba, V., Acosta, C., Cattolico, L., Jubin, C., Lajus, A., Ségurens, B., Vacherie, B., Wincker, P., Weissenbach, J., Lemaitre, B., Medigue, C. and Broccard, F. (2006) Complete genome sequence of the enthomopathogenic and metabolically versatile bacterium Pseudomonas entomophila. Nat. Biotechnol. 24: 673–679.PubMedGoogle Scholar
  45. 45.
    Frapolli, M., Ramette, A., Fischer-LeSaux, M., Meyer, J.-M., Défago, G. and Moënne-Loccoz, Y. (2007) Multilocus analysis of Pseudomonas protegens CHA0 and Pf-5, and phylogenetic comparison with other phloroglucinol-producing Pseudomonas spp. Rhizosphere 2, 26–31 Août 2007. Montpellier, France.Google Scholar
  46. 46.
    Prakash, O., Kumari, K. and Lal, R. (2007) Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int. J. Syst. Evol. Microbiol. 57: 527–531.PubMedGoogle Scholar
  47. 47.
    Camara, B., Strompl, C., Verbarg, S., Sproer, C., Pieper, D.H. and Tindall, B.J. (2007) Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. Int. J. Syst. Evol. Microbiol. 57: 923–931.PubMedGoogle Scholar
  48. 48.
    Nishimori, E., Kita-Tsukamoto, K. and Wakabayashi, H. (2000) Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int. J. Syst. Evol. Microbiol. 50: 83–89.PubMedGoogle Scholar
  49. 49.
    Lang, E., Griese, B., Spröer, C., Schumann, P., Steffen, M. and Verbarg, S. (2007) Characterization of ‘Pseudomonas azelaica’ DSM 9128, leading to emended descriptions of Pseudomonas citronellolis Seubert 1960, Approved Lists 1980) and Pseudomonas nitroreducens Iizuka and Komagata 1964, Approved Lists 1980), including Pseudomonas multiresinivorans as its later heterotypic synonym. Int. J. Syst. Evol. Microbiol. 57: 878–882.PubMedGoogle Scholar
  50. 50.
    Gessard, G. (1892) Des races du Bacillus pyocyanique. Ann. Inst. Pasteur. 2: 65–78.Google Scholar
  51. 51.
    Migula, W. (1894) Über ein neues System der Bakterien. Arb. Bakteriol. Inst. Karlsruhe 1: 235–238.Google Scholar
  52. 52.
    Meyer, J.-M., Geoffroy, V.A., Baïda, N., Gardan, L., Izard, D., Lemanceau, P., Achouak, W. and Palleroni, N. (2002) Siderophore typing, a powerful tool for the identification of fluorescent and non-fluorescent Pseudomonas. Appl. Environ. Microbiol. 68: 2745–2753.PubMedGoogle Scholar
  53. 53.
    Felis, G.E. and Dellaglio, F. (2007) On species descriptions based on a single strain: proposal to introduce the status species proponenda, sp. pr. Int. J. Syst. Evol. Microbiol. 57: 2185–2187.PubMedGoogle Scholar
  54. 54.
    Bultreys, A. and Gheysen, I. (2000) Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352. Appl. Environ. Microbiol. 66: 325–331.PubMedGoogle Scholar
  55. 55.
    De Vos, D., De Chial, M., Cochez, C., Jansen, S., Tümmler, B., Meyer, J.-M. and Cornelis, P. (2001) Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch. Microbiol. 175: 384–388.PubMedGoogle Scholar
  56. 56.
    Achouak, W., Sutra, L., Heulin, T., Meyer, J.-M., Fromin, N., Degreave, S., Christen, R. and Gardan, L. (2000) Description of Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., root-associated bacteria isolated from Arabidopsis thaliana and Brassica napus. Int. J. Syst. Evol. Microbiol. 50: 9–18.PubMedGoogle Scholar
  57. 57.
    Delorme, S., Lemanceau, P., Christen, R., Corberand, T., Meyer, J.-M. and Gardan, L. (2002) Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int. J. Syst. Evol. Microbiol. 52: 513–523.PubMedGoogle Scholar
  58. 58.
    Dabboussi, F., Hamzé, M., Singer, E., Geoffroy, V., Meyer, J.-M. and Izard, D. (2002) Pseudomonas mosselii sp. nov., a new species isolated from clinical specimens. Int. J. Syst. Evol. Microbiol. 52: 363–376.PubMedGoogle Scholar
  59. 59.
    Munsch, P., Alatossava, T., Meyer, J.-M., Marttinen, N., Christen, R. and Gardan, L. (2002) Pseudomonas costantinii sp. nov., another causal agent of brown blotch disease, isolated from cultivated mushroom sporophores in Finland. Int. J. Syst. Evol. Microbiol. 52: 1973–1983.PubMedGoogle Scholar
  60. 60.
    Behrendt, U., Ulrich, A., Schumann, P. and Meyer, J.-M. (2007) Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int. J. Syst. Evol. Microbiol. 57: 979–985.PubMedGoogle Scholar
  61. 61.
    Behrendt, U., Schumann, P., Meyer, J.-M. and Ulrich, A. (2009) Pseudomonas cedrina subsp. fulgida subsp. nov., a fluorescent bacterium isolated from the phyllosphere of grasses; emended description of Pseudomonas cedrina and description of Pseudomonas cedrina subsp. cedrina subsp. nov. Int. J. Syst. Evol. Microbiol. in press.Google Scholar
  62. 62.
    Sikorski, J., Stackebrandt, E. and Wackernagel, W. (2001) Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil. Int. J. Syst. Evol. Microbiol. 51: 1549–1555.PubMedGoogle Scholar
  63. 63.
    Gruffaz, C., Geoffroy, V., Farrokhi, A., Ghodhbane, F., Kammerer, B., Ben Slama, K., Boudabous, A., Vuillemier, S. and Meyer, J.-M. (2007) Pseudomonas taxonomy: correlation between siderotyping and rpoB sequencing in Pseudomonas fluorescens. Annual meeting of the Société Française de Microbiologie, Nantes, France.Google Scholar
  64. 64.
    Bozal, N., Montes, M.J. and Mercadé, E. (2007) Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int. J. Syst. Evol. Microbiol. 57: 2609–2612.PubMedGoogle Scholar
  65. 65.
    Peix, A., Valverde, A., Rivas, R., Igual, J.M., Ramirez-Bahena, M.H., Mateos, P.F., Santa-Regina, I., Rodriguez-Barrueco., C., Martinez-Molina, E. and Velazquez, E. (2007) Reclassification of Pseudomonas aurentiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurentiaca subsp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 57: 1286–1290.PubMedGoogle Scholar
  66. 66.
    Vela, A.I., Gutiérrez, M.C., Falsen, E., Rollan, E., Simarro, I., Garcia, P., Dominguez, L., Ventosa, A. and Fernandez-Garayzbal, J.F. (2006) Pseudomonas simiae sp. nov., isolated from clinical specimens from monkeys, Callithrix geoffroyi. Int. J. Syst. Evol. Microbiol. 56: 2671–2676.PubMedGoogle Scholar
  67. 67.
    Meyer, J.-M. (2007) Siderotyping and bacterial taxonomy: a siderophore bank for a rapid identification at the species level of fluorescent and non-fluorescent Pseudomonas, pp. 43–66. In A. Varma and S.B. Chincholkar (ed.), Microbial siderophores, Soil Biology 12. Springer Verlag, Berlin, Heidelberg.Google Scholar
  68. 68.
    Meyer, J.-M. and Geoffroy, V. (2004) Environmental fluorescent Pseudomonas and pyoverdine diversity : How siderophores could help microbiologists in bacterial identification and taxonomy, pp. 451–468. In J.H. Crosa, A.R. Mey and S.M. Payne, (ed.), Iron transport in bacteria. ASM Press, Washington DC.Google Scholar
  69. 69.
    Meyer, J.-M. and Gruffaz, C., 2009, Analysis of fluorescent and non-fluorescent Pseudomonas species through siderotyping: taxonomical insights. In preparation.Google Scholar
  70. 70.
    Reissbrodt, R. and Rabsch, W. (1988) Further differentiation of Enterobacteriaceae by means of siderophore-pattern analysis. Zentbl. Bakteriol. Hyg. A 268: 306–317.Google Scholar
  71. 71.
    Barclay, R. and Ratledge, C. (1988) Mycobactins and exochelins of Mycobacterium tuberculosis, M. bovis, M. africanum and other related species. J. Gen. Microbiol. 134: 771–776.PubMedGoogle Scholar
  72. 72.
    Bosne, S. and Levy-Frebault, V. (1992) Mycobactin analysis as an aid for identification of Mycobacterium chelonae subspecies. J. Clin. Microbiol. 30: 225–231.Google Scholar
  73. 73.
    Zywno, S.R., Arceneaux, J.E.L., Altwegg, M. and Byers, B.R. (1992) Siderophore production and DNA hybridization groups of Aeromonas spp. J. Clin. Microbiol. 30: 619–622.PubMedGoogle Scholar
  74. 74.
    Young, J.M. (1970) Drippy gill: a bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n. sp. N. Z. J. Agric. Res. 13: 977–990.Google Scholar
  75. 75.
    Linget, C., Azadi, P., MacLeod, J.K., Dell, A. and Abdallah, M. (1992) Bacterial siderophores : the structures of the pyoverdins of Pseudomonas fluorescens ATCC 13525. Tetrahedron. Lett. 33: 1737–1740.Google Scholar
  76. 76.
    Reddy, G.S.N., Matsumoto, G.I., Schumann, P., Stackebrandt, E. and Shivaji, S. (2004) Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int. J. Syst. Evol. Microbiol. 54: 713–719.PubMedGoogle Scholar
  77. 77.
    Tvrzová, L., Schumann, P., Spröer, C., Sedlacek, I., Pacova, Z., Sedo, O., Zdrahal, Z., Steffen, M. and Lang, E. (2006) Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. Int. J. Syst. Evol. Microbiol. 56: 2657–2663.PubMedGoogle Scholar
  78. 78.
    Hohlneicher, U., Hartmann, R., Taraz, K. and Budzikiewicz, H. (1995) Pyoverdin, ferribactin, azotobactin – a new triade of siderophores from Pseudomonas chlororaphis ATCC 9446 and its relation to Pseudomonas fluorescens ATCC 13525. Z. Naturforsch. 50c: 337–344.Google Scholar
  79. 79.
    Gardan, L., Shafik, H., Belouin, S., Grimont, F. and Grimont, P.A.D. (1999) DNA relatdness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov., ex Sutic and Dowson 1959. Int. J. Syst. Bacteriol. 49: 469–478.PubMedGoogle Scholar
  80. 80.
    Jülich, M., Taraz, K., Budzikiewicz, H., Geoffroy, V., Meyer, J.-M. and Gardan, L. (2001) Structure of the pyoverdin isolated from various Pseudomonas syringae pathovars. Z. Naturforsch. 56c: 687–694.Google Scholar
  81. 81.
    Uría-Fernández, D., Geoffroy, V., Schäfer, M., Meyer, J.-M. and Budzikiewicz, H. (2003) Structure revision of several pyoverdines produced by plant-growth promoting and plant-deleterious Pseudomonas species. Monatsch. Chem. 134: 1421–1431.Google Scholar
  82. 82.
    Baïda, N., Yazourh, A., Singer, E. and Izard, D. (2001) Pseudomonas brenneri sp. nov., a new species isolated from natural mineral waters. Res. Microbiol. 152: 493–502.PubMedGoogle Scholar
  83. 83.
    Demange, P., Bateman, A., Mertz, C., Dell, A., Piémont, Y. and Abdullah, M. (1990) Structures of pyoverdines Pt, siderophores of Pseudomonas tolaasii NCPPB 2192, and pyoverdines Pf, siderophores of Pseudomonas fluorescens CCM 2798. Identification of an unusual natural amino acid. Biochemistry 29: 11041–11051.PubMedGoogle Scholar
  84. 84.
    Dabboussi, F., Hamzé, M., Elomari, M., Verhille, S., Baïda, N., Izard, D. and Leclerc, H. (1999) Taxonomic study of bacteria isolated from Lebanese spring waters: proposal for Pseudomonas cedrella sp. nov. and P. orientalis sp. nov. Res. Microbiol. 150: 303–316.PubMedGoogle Scholar
  85. 85.
    Barelmann, I., Fernandez, D.U., Budzikiewicz, H. and Meyer, J.-M. (2003) The pyoverdine from Pseudomonas chlororaphis D-TR133 showing mutual acceptance with the pyoverdine of Pseudomonas fluorescens CHA0. Biometals 16: 263–270.PubMedGoogle Scholar
  86. 86.
    Behrendt, U., Ulrich, A. and Schumann, P. (2003) Fluorescent pseudomonads associated with the phyllosphere of grasses: Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int. J. Syst. Evol. Microbiol. 53: 1461–1469.PubMedGoogle Scholar
  87. 87.
    Fernandez, D.U., Fuchs, R., Taraz, K., Budzikiewicz, H., Munsch, P. and Meyer, J.-M. (2001) The structure of a pyoverdine produced by a Pseudomonas tolaasii-like isolate. Biometals 14: 81–84.PubMedGoogle Scholar
  88. 88.
    Ivanova, E.P., Gorshkova, N.M., Sawabe, T., Hayashi, K., Kalinovskaya, N.I., Lysenko, A.M., Zhukova, N.V., Nicolau, D.V., Kuznetsova, T.A., Mikhailov, V.V. and Christen, R. (2002) Pseudomonas extremorientalis sp. nov., isolated from a drinking water reservoir. Int. J. Syst. Evol. Microbiol. 52: 2113–2120.PubMedGoogle Scholar
  89. 89.
    Rott, P., Notteghem, J.L. and Frossard, P. (1989) Identification and characterization of Pseudomonas fuscovaginae, the causal agent of bacterial sheath brown rot of rice, from Madagascar and other countries. Plant. Dis. 73: 133–137.Google Scholar
  90. 90.
    Verhille, S., Baïda, N., Dabboussi, F., Hamzé, M., Izard, D. and Leclerc, H. (1999) Pseudomonas gessardii sp. nov. and Pseudomonas migulae sp. nov., two new species isolated from natural mineral waters. Int. J. Syst. Bacteriol. 49: 1559–1572.PubMedGoogle Scholar
  91. 91.
    Baïda, N., Yazourh, A., Singer, E. and Izard, D. (2002) Pseudomonas grimontii sp. nov. Int. J. Syst. Evol. Microbiol. 52: 1497–1503.PubMedGoogle Scholar
  92. 92.
    Budzikiewicz, H., Kilz, S., Taraz, K. and Meyer, J.-M. (1997) Identical pyoverdines from Pseudomonas fluorescens 9AW and from Pseudomonas putida 9BW. Z. Naturforsch. 52c: 721–728.Google Scholar
  93. 93.
    Shivaji, S., Rao, N.S., Saisree, L., Shet, V., Reddy, G.S.N. and Bhargava, P.M. (1989) Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl. Environ. Microbiol. 55: 767–770.PubMedGoogle Scholar
  94. 94.
    Verhille, S., Baïda, N., Dabboussi, F., Izard, D. and Leclerc, H. (1999) Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov. Syst. Appl. Microbiol. 22: 45–58.PubMedGoogle Scholar
  95. 95.
    Beiderbeck, H., Taraz, K. and Meyer, J.-M. (1999b) Revised structures of the pyoverdins from Pseudomonas putida CFBP 2461 and from Pseudomonas fluorescens CFBP 2392. Biometals 12: 331–338.PubMedGoogle Scholar
  96. 96.
    Kwon, S.W., Kim, J.S., Park, I.C., Yoon, S.H., Park, D.H., Lim, C.K. and Go, S.J. (2003) Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. Int. J. Syst. Evol. Microbiol. 53: 21–27.PubMedGoogle Scholar
  97. 97.
    Dabboussi, F., Hamzé, M., Elomari, M., Verhille, S., Baïda, N., Izard, D. and Leclerc, H. (1999) Pseudomonas libanensis sp. nov., a new species isolated from Lebanese spring waters. Int. J. Syst. Bacteriol. 49: 1091–1101.PubMedGoogle Scholar
  98. 98.
    Voss, J., Taraz, K. and Budzikiewicz, H. (1999) A pyoverdin from the Antarctica strain 51 W of Pseudomonas fluorescens. Z. Naturforsch. 54c: 156–162.Google Scholar
  99. 99.
    Elomari, M., Coroler, L., Verhille, S., Izard, D. and Leclerc, H. (1997) Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int. J. Syst. Bacteriol. 47: 846–852.PubMedGoogle Scholar
  100. 100.
    Clark, L.L., Dajcs, J.J., McLean, C.H., Bartell, J.G. and Stroman, D.W. (2006) Pseudomonas otitidis sp. nov., isolated from patients with otic infections. Int. J. Syst. Evol. Microbiol. 56: 709–714.PubMedGoogle Scholar
  101. 101.
    Geisen, K., Taraz, K. and Budzikiewicz, H. (1992) Neue Siderophore des Pyoverdin-typs aus Pseudomonas fluorescens. Monatsh Chem. 123: 151–178.Google Scholar
  102. 102.
    Park, Y.-D., Burm Lee, H., Yi, H., Kim, Y., Bae, K.S., Choi, J.-E., Jung, H.S. and Chun, J. (2005) Pseudomonas panacis sp. nov., isolated from the surface of rusty roots of Korean ginseng. Int. J. Syst. Evol. Microbiol. 55: 1721–1724.PubMedGoogle Scholar
  103. 103.
    Wong-Lun-Sang, S., Bernardini., J.J., Hennard, C., Kyslic, P., Dell, A. and Abdallah, M. (1996) Bacterial siderophores: structure elucidation, 2D 1H and 13C NMR assignments of pyoverdins produced by Pseudomonas fluorescens CHA0. Tetrahedron Lett. 37: 3329–3332.Google Scholar
  104. 104.
    Mohn, G., Taraz, K. and Budzikiewicz, H. (1990) New pyoverdin-type siderophores from Pseudomonas fluorescens. Z. Naturforsch. 45b: 1437–1450.Google Scholar
  105. 105.
    Budzikiewicz, H., Schröder, H. and Taraz, K. (1992) Zur Biogenese der Pseudomonas-Siderophore: der Nachweis analoger Strukturen eines Pyoverdin-Desferribactin-Paares. Z. Naturforsch. 47c: 26–32.Google Scholar
  106. 106.
    Coroler, L., Elomari, M., Hoste, B., Gillis, M., Izard, D. and Leclerc, H. (1996) Pseudomonas rhodesiae sp. nov., a new species isolated from natural mineral waters. Syst. Appl. Microbiol. 19: 600–607.Google Scholar
  107. 107.
    Schlegel, K., Fuchs, R., Schäfer, M., Taraz, K., Budzikiewicz, H., Geoffroy, V.A. and Meyer, J.-M. (2001) The pyoverdins of Pseudomonas sp. CFML 96-312 and CFML 96-318. Z Naturforsch 56c: 680–686.Google Scholar
  108. 108.
    Bultreys, A., Gheysen, I., Wathelet, B., Schäfer, M. and Budzikiewicz, H. (2004) The pyoverdins of Pseudomonas syringae and Pseudomonas cichorii. Z. Naturforsch. 59c: 613–618.Google Scholar
  109. 109.
    Munsch, P., Geoffroy, V., Alatossava, T. and Meyer, J.-M. (2000) Application of siderotyping for the characterization of Pseudomonas tolaasii and Pseudomonas reactans isolates associated with brown blotch disease of cultivated mushrooms. Appl. Environ. Microbiol. 66: 4834–4841.PubMedGoogle Scholar
  110. 110.
    Elomari, M., Coroler, L., Hoste, B., Gillis, M., Izard, D. and Leclerc, H. (1996) DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int. J. Syst. Bacteriol. 46: 1138–1144.PubMedGoogle Scholar
  111. 111.
    Briskot, G., Taraz, K. and Budzikiewicz, H. (1989) Pyoverdine-Type siderophores from Pseudomonas aeruginosa. Liebigs. Ann. Chem.: 375–384.Google Scholar
  112. 112.
    Tappe, R., Taraz, K., Budzikiewicz, H., Meyer, J.-M. and Lefèvre, J.-F. (1993) Structure elucidation of a pyoverdin produced by Pseudomonas aeruginosa ATCC 27853. J. Prakt. Chem. 335: 83–87.Google Scholar
  113. 113.
    Gipp, S., Hahn, J., Taraz, K. and Budzikiewicz, H. (1991) Zwei Pyoverdine aus Pseudomonas aeruginosa R. Z. Naturforsch. 46c: 534–541.Google Scholar
  114. 114.
    Ruangviriyachai, C., Fernandez, D.U., Fuchs, R., Meyer, J.-M. and Budzikiewicz., H. (2001) A new pyoverdin from Pseudomonas aeruginosa R'. Z. Naturforsch. 56c: 933–938.Google Scholar
  115. 115.
    Amann, C., Taraz, K., Budzikiewicz, H. and Meyer, J.-M. (2000) The siderophores of Pseudomonas fluorescens 18.1 and the importance of cyclopeptidic substructures for the recognition at the cell surface. Z. Naturforsch. 55c: 671–680.Google Scholar
  116. 116.
    Sultana, R., Fuchs, R., Schmickler, H., Schlegel, K., Budzikiewicz, H., Siddiqui, B.S., Geoffroy, V. and Meyer, J.-M. (2000) A pyoverdin from Pseudomonas sp. CFML 95-275. Z. Naturforsch. 55c: 857–865.Google Scholar
  117. 117.
    Persmark, M., Frejd, T. and Mattiasson, B. (1990) Purification, characterization, and structure of pseudobactin 589A, a siderophore from a plant growth promoting Pseudomonas. Biochemistry 29: 7348–7356.PubMedGoogle Scholar
  118. 118.
    Jacques, P., Ongena, M., Gwose, I., Seinsche, D., Schröder, H., Delfosse, P., Thonart, P., Taraz, K. and Budzikiewicz, H. (1995) Structure and characterization of isopyoverdin from Pseudomonas putida BTP1 and its relation to the biogenetic pathway leading to pyoverdins. Z. Naturforsch. 50c: 622–629.Google Scholar
  119. 119.
    Sultana, R., Siddiqui, B.S., Taraz, K., Budzikiewicz, H. and Meyer, J.-M. (2001) An isopyoverdin from Pseudomonas putida CFML 90-44. Z. Naturforsch. 56c: 303–307.Google Scholar
  120. 120.
    Sultana, R., Siddiqui, B.S., Taraz, K., Budzikiewicz, H. and Meyer, J.-M. (2000) A pyoverdine from Pseudomonas putida CFML 90-51 with a Lys e-amino link in the peptide chain. Biometals 13: 147–152.PubMedGoogle Scholar
  121. 121.
    Georgias, H., Taraz, K., Budzikiewicz, H., Geoffroy, V. and Meyer, J.-M. (1999) The structure of the pyoverdin from Pseudomonas fluorescens 1.3. Structural and biological relationships of pyoverdins from different strains. Z. Naturforsch. 54c: 301–308.Google Scholar
  122. 122.
    Budzikiewicz, H., Schäfer, M., Fernandez, D.U. and Meyer, J.-M. (2006) Structure proposal for a new pyoverdin from Pseudomonas sp. PS6.10. Z. Naturforsch. 61c: 815–820.Google Scholar
  123. 123.
    Poppe, K., Taraz, K. and Budzikiewicz, H. (1987) Pyoverdine type from Pseudomonas fluorescens. Tetrahedron 43: 2261–2272.Google Scholar
  124. 124.
    Sultana, R., Siddiqui, B.S., Taraz, K., Budzikiewicz, H. and Meyer, J.-M. (2001) An isopyoverdin from Pseudomonas putida CFML 90-33. Tetrahedron 57: 1019–1023.Google Scholar
  125. 125.
    Budzikiewicz, H., Fernandez, D.U., Fuchs, R., Michalke, R., Taraz, K. and Ruangviriyachai, C. (1999) Pyoverdines with a Lys ε-amino link in the peptide chain? Z. Naturforsch. 54c: 1021–1026.Google Scholar
  126. 126.
    Seinsche, D., Taraz, K., Budzikiewicz, H. and Gondol, D. (1993) Neue Pyoverdin-Siderophore aus Pseudomonas putida C. J. Prakt. Chem. 335: 157–168.Google Scholar
  127. 127.
    Salah-el-Din, A.L.M., Kyslic, P., Stephan, D. and Abdallah, M.A. (1997) Bacterial iron transport: structure elucidation by FAB-MS and by 2D NMR (1H, 13C, 15N) of pyoverdin G4R, a peptidic siderophore produced by a nitrogen-fixing strain of Pseudomonas putida. Tetrahedron 53: 12539–12552.Google Scholar
  128. 128.
    Barelmann, I., Taraz, K., Budzikiewicz, H., Geoffroy, V.A. and Meyer, J.-M. (2002) The structures of the pyoverdins from two Pseudomonas fluorescens strains accepted mutually by their respective producers. Z. Naturforsch. 57c: 9–16.Google Scholar
  129. 129.
    Ruangviriyachai, C., Uria-Fernandez, D., Schäfer, M. and Budzikiewicz, H. (2004) Structure proposal for a new pyoverdin from a Thai Pseudomonas putida strain. Spectroscopy 18: 453–458.Google Scholar
  130. 130.
    Uría-Fernández, D., Fuchs, R., Schäfer, M., Budzikiewicz, H. and Meyer, J.-M. (2003) The pyoverdin of Pseudomonas fluorescens G173, a novel structural type accompanied by unexpected natural derivatives of the corresponding ferribactin. Z. Naturforsch. 58c: 1–10.Google Scholar
  131. 131.
    Vossen, W., Fuchs, R., Taraz, K. and Budzikiewicz, H. (2000) Can the peptide chain of a pyoverdin be bound by an ester bond to the chromophore ?- The old problem of pseudobactin 7SR1. Z. Naturforsch. 55c: 153–164.Google Scholar
  132. 132.
    Beiderbeck, H., Risse, D., Budzikiewicz, H. and Taraz, K. (1999a) A new pyoverdin from Pseudomonas aureofaciens. Z. Naturforsch. 54c: 1–5.Google Scholar
  133. 133.
    Ruangviriyachai, C., Barelmann, I., Fuchs, R. and Budzikiewicz, H. (2000) An exceptionally large pyoverdin from a Pseudomonas strain collected in Thailand. Z. Naturforsch. 55c: 323–327.Google Scholar
  134. 134.
    Weber, M., Taraz, K., Budzikiewicz, H., Geoffroy, V. and Meyer, J.-M. (2000) The structure of a pyoverdine from Pseudomonas sp. CFML 96.188 and its relation to other pyoverdines with a cyclic C-terminus. Biometals 13: 301–309.PubMedGoogle Scholar
  135. 135.
    Vossen, W. and Taraz, K. (1999) Structure of the pyoverdine PVD 2908 – A new pyoverdin from Pseudomonas sp. 2908. Biometals 12: 323–329.PubMedGoogle Scholar
  136. 136.
    Schäfer, M., Fuchs, R., Budzikiewicz, H., Springer, A., Meyer, J.-M. and Linscheid, M. (2006) Structure elucidation of cyclic pyoverdins and examination of rearrangement reactions in MS/MS experiments by determination of exact product ion masses. J. Mass. Spectrom. 41: 1162–1170.PubMedGoogle Scholar
  137. 137.
    Gwose, I. and Taraz, K. (1992) Pyoverdine aus Pseudomonas putida. Z. Naturforsch. 47c: 487–502.Google Scholar
  138. 138.
    Ongena, M., Jacques, P., Thonart, P., Gwose, I., Fernandez, D.U., Schäfer, M. and Budzikiewicz, H. (2001) The pyoverdin of Pseudomonas fluorescens BTP2, a novel structural type. Tetrahedron Lett. 42: 5849–5851.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Département Génétique moléculaire, Génomique et MicrobiologieUMR 7156 CNRS-Université deStrasbourgFrance

Personalised recommendations