Rényi Entropy and Complexity

  • Á. Nagy
  • E. Romera


Several important properties of the Rényi entropy and Rényi entropy power are presented. Uncertainty relations for the Rényi entropy including uncertainty relations for single particle densities of many particle systems in position and momentum spaces are discussed. Connection between Fisher information and Rényi entropy is studied. The Fisher-Rényi information plane and entropic product are presented.

Position and momentum space Rényi entropies of order α are presented for ground-state neutral atoms with atomic numbers Z=1–103. It is emphasized that the values of α≤1 (α≥1) stress the shell structure for position-space (momentum-space) Rényi entropies. Position and momentum space relative Rényi entropies of order α are presented for ground-state neutral atoms with atomic numbers Z=1–103. Simple hydrogen-like model densities are used as the reference. A relationship with the atomic radius and quantum capacitance is also discussed.

The relationship between the statistical complexity and the Rényi entropy is studied. A recently introduced, one-parameter extension of the LMC complexity is presented.

The maximum Rényi entropy principle is used to generalize the Thomas-Fermi model. A simple relation between the dimension and the Rényi parameter is emphasized.


Uncertainty Relation Momentum Space Fisher Information Shannon Entropy Model Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



E.R. acknowledges the Spanish project FQM-165/0207 (Junta de Andalucía) and No. FIS2008-01143. Á.N. acknowledges grant OTKA No. T67923. The work was also supported by the TAMOP 4.2.1/B-09/1/KONV-2010-0007 project. The project is co-financed by the European Union and the European Social Fund.


  1. 1.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423 Google Scholar
  2. 2.
    Sears SB, Parr RG, Dinur U (1980) On the quantum-mechanical kinetic-energy as a measure of the information in a distribution. Isr J Chem 19:165–173 Google Scholar
  3. 3.
    Gadre SR (1984) Information entropy and Thomas-Fermi theory. Phys Rev A 30:620–621 CrossRefGoogle Scholar
  4. 4.
    Gadre SR, Sears SB, Chakravorty SJ, Bendale RD (1985) Some novel characteristics of atomic information entropies. Phys Rev A 32:2602–2606 CrossRefGoogle Scholar
  5. 5.
    Tripathi AN, Sagar RP, Esquivel RO, Smith VH Jr (1992) Electron correlation in momentum space—the beryllium-atom isoelectronic sequence. Phys Rev A 45:4385–4392 CrossRefGoogle Scholar
  6. 6.
    Yánez RJ, Van Assche W, Dehesa JS (1994) Position and momentum information entropies of the D-dimensional harmonic-oscillator and hydrogen-atom. Phys Rev A 32:3065–3079 CrossRefGoogle Scholar
  7. 7.
    Hó M, Sagar RP, Smith VH Jr, Esquivel RO (1994) Atomic information entropies beyond the Hartree-Fock limit. J Phys B 27:5149–5157 CrossRefGoogle Scholar
  8. 8.
    Hó M, Sagar RP, Pérez-Jordá JM, Smith VH Jr, Esquivel RO (1994) A molecular study of molecular information entropies. Chem Phys Lett 219:15–20 CrossRefGoogle Scholar
  9. 9.
    Nagy Á, Parr RG (1996) Information entropy as a measure of the quality of an approximate electronic wave function. Int J Quant Chem 58:323–327 CrossRefGoogle Scholar
  10. 10.
    Guevara NL, Sagar RP, Esquivel RO (2003) Shannon-information entropy sum as a correlation measure in atomic systems. Phys Rev A 67:012507 CrossRefGoogle Scholar
  11. 11.
    Guevara NL, Sagar RP, Esquivel RO (2003) Information uncertainty-type inequalities in atomic systems. J Chem Phys 119:7030–7036 CrossRefGoogle Scholar
  12. 12.
    Guevara NL, Sagar RP, Esquivel RO (2005) Local correlation measures in atomic systems. J Chem Phys 122:084101 Google Scholar
  13. 13.
    Moustakidis ChC, Massen SE (2005) Dependence of information entropy of uniform Fermi systems on correlations and thermal effects. Phys Rev B 71:045102 CrossRefGoogle Scholar
  14. 14.
    Sen KD (2005) Characteristic features of Shannon information entropy of confined atoms. J Chem Phys 123:074110 Google Scholar
  15. 15.
    Fisher RA (1925) Theory of statistical estimation. Proc Camb Philos Soc 22:700–725 CrossRefGoogle Scholar
  16. 16.
    Frieden BR (1989) Fisher information as the basis for the Schrodinger wave-equation. Am J Phys 57:1004–1008 CrossRefGoogle Scholar
  17. 17.
    Reginatto M (1998) Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information. Phys Rev A 58:1775–1778 CrossRefGoogle Scholar
  18. 18.
    Frieden BR (1998) Physics from Fisher information. A unification. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  19. 19.
    Nalewajski R (2003) Information principles in the theory of electronic structure. Chem Phys Lett 372:28–34 CrossRefGoogle Scholar
  20. 20.
    Nagy Á (2003) Fisher information in density functional theory. J Chem Phys 119:9401–9405 CrossRefGoogle Scholar
  21. 21.
    Romera E, Sánchez-Morena P, Dehesa JS (2005) The Fisher information of single-particle systems with a central potential. Chem Phys Lett 414:468–472 CrossRefGoogle Scholar
  22. 22.
    Nagy Á (2006) Fisher information in a two-electron entangled artificial atom. Chem Phys Lett 425:154–156 CrossRefGoogle Scholar
  23. 23.
    Nagy Á, Sen KD (2006) Atomic Fisher information versus atomic number. Phys Lett A 360:291–293 CrossRefGoogle Scholar
  24. 24.
    Hornyák I, Nagy Á (2007) Phase-space Fisher information. Chem Phys Lett 437:132–137 CrossRefGoogle Scholar
  25. 25.
    Romera E, Dehesa JS (2004) The Fisher-Shannon information plane, an electron correlation tool. J Chem Phys 120:8906–8912 CrossRefGoogle Scholar
  26. 26.
    Romera E (2002) Stam’s principle D-dimensional uncertainty-like relationships and some atomic properties. Mol Phys 100:3325–3329 CrossRefGoogle Scholar
  27. 27.
    Nagy Á, Sen KD (2006) Atomic Fisher information versus atomic number. Phys Lett A 360:291–293 CrossRefGoogle Scholar
  28. 28.
    Liu SB (2007) On the relationship between densities of Shannon entropy and Fisher information for atoms and molecules. J Chem Phys 126:191107 CrossRefGoogle Scholar
  29. 29.
    Nagy Á (2007) Fisher information and Steric effect. Chem Phys Lett 449:212–215 CrossRefGoogle Scholar
  30. 30.
    Nagy Á, Liu SB (2008) Local wave-vector, Shannon and Fisher information. Phys Lett A 372:1654–1656 CrossRefGoogle Scholar
  31. 31.
    Szabó JB, Sen KD, Nagy Á (2008) The Fisher-Shannon information plane for atoms. Phys Lett A 372:2428–2430 CrossRefGoogle Scholar
  32. 32.
    Rényi A (1961) In: Proceedings of fourth Berkeley symp on mathematics, statistics and probability, vol 1. Univ California Press, Berkeley, p 547 Google Scholar
  33. 33.
    Gühne O, Lewenstein M (2004) Entropic uncertainty relations and entanglement. Phys Rev A 70:022316 CrossRefGoogle Scholar
  34. 34.
    Adesso G, Serafini A, Illuminati F (2004) Extremal entanglement and mixedness in continuous variable systems. Phys Rev A 70:022318 CrossRefGoogle Scholar
  35. 35.
    Bovino A, Castagnolli G, Ekert A, Horodecki P, Alves CM, Serfienko AV (2005) Direct measurement of nonlinear properties of bipartite quantum states. Phys Rev Lett 95:240407 CrossRefGoogle Scholar
  36. 36.
    Renner R, Gisin N, Kraus B (2005) Information-theoretic security proof for quantum-key-distribution protocols. Phys Rev A 72:012332 CrossRefGoogle Scholar
  37. 37.
    Giovannetti V, Lloyd S (2004) Additivity properties of a Gaussian channel. Phys Rev A 69:062307 CrossRefGoogle Scholar
  38. 38.
    Lévay P, Nagy S, Pipek J (2005) Elementary formula for entanglement entropies of fermionic systems. Phys Rev A 72:022302 CrossRefGoogle Scholar
  39. 39.
    Romera E, de los Santos F (2008) Fractional revivals through Renyi uncertainty relations. Phys Rev A 78:013837 CrossRefGoogle Scholar
  40. 40.
    Arbo DG, Reinhold CO, Burgdörfer J, Pattanayak AK, Stokely CL, Zhao W, Lancaster JC, Dunning FB (2003) Pulse-induced focusing of Rydberg wave packets. Phys Rev A 67:063401 CrossRefGoogle Scholar
  41. 41.
    Romera E, Nagy Á (2008) Rényi information of atoms. Phys Lett A 372:4918–4922 CrossRefGoogle Scholar
  42. 42.
    Nagy Á, Romera E (2009) Relative Rényi entropy for atoms. Int J Quant Chem 109:2490–2494 CrossRefGoogle Scholar
  43. 43.
    Romera E, Nagy Á (2008) Fisher-Rényi entropy product and information plane. Phys Lett A 372:6823–6825 CrossRefGoogle Scholar
  44. 44.
    López-Ruiz R, Mancini HL, Calbet X (1995) A statistical measure of complexity. Phys Lett A 209:321–326 CrossRefGoogle Scholar
  45. 45.
    Nagy Á, Romera E (2009) Maximum Renyi entropy principle and the generalized Thomas-Fermi model. Phys Lett A 373:844–846 CrossRefGoogle Scholar
  46. 46.
    Hirschman IJ (1957) A note on entropy. Am J Math 79:152–156 CrossRefGoogle Scholar
  47. 47.
    Bialynicki-Birula I, Mycielski I (1975) Uncertainty relations for information entropy in wave mechanics. Commun Math Phys 44:129–132 CrossRefGoogle Scholar
  48. 48.
    Beckner W (1975) Inequalities in Fourier-analysis. Ann Math 102:159–182 CrossRefGoogle Scholar
  49. 49.
    Dembo A, Cover TM, Thomas JA (1991) Information theoretic inequalities. IEEE Trans Inf Theory 37:1501–1518 CrossRefGoogle Scholar
  50. 50.
    Bialynicki-Birula I (2006) Formulation of the uncertainty relations in terms of the Renyi entropies. Phys Rev A 74:052101 CrossRefGoogle Scholar
  51. 51.
    Koga T, Kanayama K, Watanabe S, Thakkar AJ (1999) Analytical Hartree-Fock wave functions subject to cusp and asymptotic constraints: He to Xe, Li+ to Cs+, H to I. Int J Quant Chem 71:491–497 CrossRefGoogle Scholar
  52. 52.
    Koga T, Kanayama K, Watanabe S, Imai T, Thakkar AJ (2000) Analytical Hartree-Fock wave functions for the atoms Cs to Lr. Theor Chem Acc 104:411–413 Google Scholar
  53. 53.
    Sagar RP, Ramirez JC, Esquivel RO, Ho M, Smith VH Jr (2001) Shannon entropies and logarithmic mean excitation energies from cusp- and asymptotic-constrained model densities. Phys Rev A 63:022509 CrossRefGoogle Scholar
  54. 54.
    Sagar RB, Guevara NL (2008) Relative entropy and atomic structure. J Mol Struct, Theochem 857:72–77 CrossRefGoogle Scholar
  55. 55.
    Ellenbogen JC (2006) Neutral atoms behave much like classical spherical capacitors. Phys Rev A 74:034501 CrossRefGoogle Scholar
  56. 56.
    Iafrate GJ, Hess K, Krieger JB, Macucci M (1995) Capacitive nature of atomic-sized structures. Phys Rev B 52:10737–10739 CrossRefGoogle Scholar
  57. 57.
    Perdew JP (1988) Correction. Phys Rev B 37:4267–4267 CrossRefGoogle Scholar
  58. 58.
    Vignat C, Bercher JF (2003) Analysis of signals in the Fisher-Shannon information plane. Phys Lett A 312:27–33 CrossRefGoogle Scholar
  59. 59.
    Zozor S, Portesi M, Vignat C (2008) Some extensions of the uncertainty principle. Physica A 387:19–20 CrossRefGoogle Scholar
  60. 60.
    Hoffmann Ostenhof M, Hoffmann Ostenhof T (1977) “Schrödinger inequalities” and asymptotic behavior of the electron density of atoms and molecules. Phys Rev A 16:1782–1785 CrossRefGoogle Scholar
  61. 61.
    Carlen EA (1991) Superadditivity of Fisher information and logarithmic Sobolev inequalities. J Funct Anal 101:194–211 CrossRefGoogle Scholar
  62. 62.
    Carbó R, Arnau J, Leyda L (1980) How similar is a molecule to another—an electron-density measure of similarity between 2 molecular-structures. Int J Quant Chem 17:1185–1189 CrossRefGoogle Scholar
  63. 63.
    Borgou A, Godefroid M, Indelicato P, De Proft F, Geerlings P (2007) Quantum similarity study of atomic density functions: insights from information theory and the role of relativistic effects. J Chem Phys 126:044102 CrossRefGoogle Scholar
  64. 64.
    Angulo JC (2007) Atomic quantum similarity indices in position and momentum spaces. J Chem Phys 126:044106 Google Scholar
  65. 65.
    Oniescu O (1966) C R Acad Sci Paris A 263:25 Google Scholar
  66. 66.
    Hall MJW (1999) Universal geometric approach to uncertainty, entropy, and information. Phys Rev A 59:2602–2615 CrossRefGoogle Scholar
  67. 67.
    Pennini F, Plastino A (2007) Localization estimation and global vs local information measures. Phys Lett A 365:263–267 CrossRefGoogle Scholar
  68. 68.
    Hyman AS, Yaniger SI, Liebman JL (1978) Interrelations among X-ray-scattering, electron-densities, and ionization-potentials. Int J Quant Chem 19:757–766 CrossRefGoogle Scholar
  69. 69.
    Pipek J, Varga I (1997) Statistical electron densities. Int J Quant Chem 64:85–93 CrossRefGoogle Scholar
  70. 70.
    Borgou A, De Proft F, Geerlings P, Sen KD (2007) Complexity of Dirac-Fock atom increases with atomic number. Chem Phys Lett 44:186–191 CrossRefGoogle Scholar
  71. 71.
    Romera E, López-Ruiz R, Sanudo J, Nagy Á (2009) Generalized statistical complexity and Fisher-Rényi entropy product in the H-atom. Int Rev Phys (IREPHY) 3:207–211 Google Scholar
  72. 72.
    Levy M (1979) Universal variational functionals of electron-densities, 1st-order density-matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci USA 76:6062–6065 CrossRefGoogle Scholar
  73. 73.
    Lieb EH (1983) Density functional for coulomb systems. Int J Quant Chem 24:243–277 CrossRefGoogle Scholar
  74. 74.
    Thomas LH (1927) The calculation of atomic fields. Proc Camb Philos Soc 23:542–548 CrossRefGoogle Scholar
  75. 75.
    Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Phys 48:73–79 CrossRefGoogle Scholar
  76. 76.
    Kventsel GF, Katriel J (1981) Thomas-Fermi atom in N-dimensions. Phys Rev A 24:2299–2301 CrossRefGoogle Scholar
  77. 77.
    March NH (1985) Scaling properties of total energy of heavy positive-ions in d-dimensions. J Math Phys 26:554–555 CrossRefGoogle Scholar
  78. 78.
    Holas A, March NH (1994) Perturbation and density-gradient expansions in d-dimensions. Philos Mag 69:787–798 Google Scholar
  79. 79.
    March NH, Kais S (1997) Kinetic energy functional derivative for the Thomas-Fermi atom in D dimensions. Int J Quant Chem 65:411–413 CrossRefGoogle Scholar
  80. 80.
    Shivamoggi BK (1998) Thomas-Fermi theory in an n-dimensional space. Physica A 248:195–206 CrossRefGoogle Scholar
  81. 81.
    Janes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630 CrossRefGoogle Scholar
  82. 82.
    Janes ET (1957) Information theory and statistical mechanics. II. Phys Rev 108:171–190 CrossRefGoogle Scholar
  83. 83.
    Sanudo J, Pacheco AF (2006) Electrons in a box: Thomas-Fermi solution. Can J Phys 84:833–844 CrossRefGoogle Scholar
  84. 84.
    Schuck P, Vinas X (2000) Thomas-Fermi approximation for Bose-Einstein condensates in traps. Phys Rev A 61:043603 CrossRefGoogle Scholar
  85. 85.
    Cappelluti E, Delle Site L (2002) Generalized Thomas-Fermi approach for systems under pressure. Physica A 303:481–492 CrossRefGoogle Scholar
  86. 86.
  87. 87.
    Massen, Panos (2001) A link of information entropy and kinetic energy for quantum many-body systems. Phys Lett A 280:65–69 CrossRefGoogle Scholar
  88. 88.
    Debnath L, Mikusinski P (2005) Introduction to Hilbert spaces. Academic Press, San Diego Google Scholar
  89. 89.
    López-Ruiz R, Nagy Á, Romera E, Sanudo J (2009) A generalized statistical complexity measure: applications to quantum systems. J Math Phys 50:123528 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of DebrecenDebrecenHungary
  2. 2.Departamento de Física Atómica, Molecular y NuclearUniversidad de GranadaGranadaSpain

Personalised recommendations