Skip to main content

Derivation of Generalized von Weizsäcker Kinetic Energies from Quasiprobability Distribution Functions

  • Chapter
Statistical Complexity

Abstract

The Fisher Information of the electronic distribution functions is closely related to the von Weizsäcker kinetic energy functional. We show how generalizations of the Weizsäcker kinetic energy density functional can be derived from the canonical momentum-space expression for the kinetic energy and extend this result to higher-order electron distribution functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Weizsäcker CF (1935) Zur Theorie der Kernmassen. Z Phys 96:431

    Article  Google Scholar 

  2. Furche F (2004) Towards a practical pair-density functional theory for many-electron systems. Phys Rev A 70:022514

    Article  Google Scholar 

  3. Ayers PW (2005) Generalized density functional theories using the k-electron densities: Development of kinetic energy functionals. J Math Phys 46:062107

    Article  Google Scholar 

  4. Sears SB (1980) Applications of information theory in chemical physics. PhD thesis, University of North Carolina at Chapel Hill

    Google Scholar 

  5. Sears SB, Parr RG, Dinur U (1980) On the quantum-mechanic kinetic-energy as a measure of the information in a distribution. Isr J Chem 19(1–4):165

    CAS  Google Scholar 

  6. Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:399

    Google Scholar 

  7. Frieden BR (1998) Physics from Fisher information: a unification. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Nalewajski RF (2008) Use of Fisher information in quantum chemistry. Int J Quant Chem 108:2230

    Article  CAS  Google Scholar 

  9. Thomas LH (1927) The calculation of atomic fields. Proc Camb Philol Soc 23:542

    Article  CAS  Google Scholar 

  10. Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Phys 48:73

    CAS  Google Scholar 

  11. Wang WP, Parr RG, Murphy DR, Henderson GA (1976) Chem Phys Lett 43(3):409

    Article  CAS  Google Scholar 

  12. Murphy DR (1981) Sixth-order term of the gradient expansion of the kinetic-energy density functional. Phys Rev A 24(4):1682

    Article  CAS  Google Scholar 

  13. Wang YA, Govind N, Carter EA (1998) Orbital-free kinetic-energy functionals for the nearly free electron gas. Phys Rev B 58:13465

    Article  CAS  Google Scholar 

  14. Wang YA, Carter EA, Schwartz SD (2000) Theoretical methods in condensed phase chemistry. Kluwer, Dordrecht, p 117

    Google Scholar 

  15. Garcia-Gonzalez PJ, Alvarellos E, Chacon E (1998) Kinetic-energy density functionals based on the homogeneous response function applied to one-dimensional fermion systems. Phys Rev A 57(6):4192

    Article  CAS  Google Scholar 

  16. Garcia-Aldea D, Alvarellos JE (2007) Kinetic-energy density functionals with nonlocal terms with the structure of the Thomas-Fermi functional. Phys Rev A 76:052504

    Article  Google Scholar 

  17. Ho GS, Huang C, Carter EA (2007) Describing metal surfaces and nanostructures with orbital-free density functional theory. Curr Opin Solid State Mater Sci 11:57

    Article  CAS  Google Scholar 

  18. Chen HJ, Zhou AH (2008) Orbital-free density functional theory for molecular structure calculations. Numer Math-Theory Method Appl 1:1

    Google Scholar 

  19. March NH (2010) Some pointers towards a future orbital-free density functional theory of inhomogeneous electron liquids. Phys Chem Liq 48:141

    Article  CAS  Google Scholar 

  20. Wesolowski TA (2004) Quantum chemistry ‘Without orbitals’—an old idea and recent developments. Chimia 58(5):311

    Article  CAS  Google Scholar 

  21. Garcia-Aldea D, Alvarellos JE (2007) Kinetic energy density study of some representative semilocal kinetic energy functionals. J Chem Phys 127:144109

    Article  Google Scholar 

  22. Garcia-Aldea D, Alvarellos JE (2008) Fully nonlocal kinetic energy density functionals: A proposal and a general assessment for atomic systems. J Chem Phys 129:074103

    Article  Google Scholar 

  23. Kozlowski PM, March NH (1989) Approximate density-external potential relation and the Pauli potential for systems with Coulombic interaction. Int J Quant Chem 36(6):741

    Article  CAS  Google Scholar 

  24. Holas A, March NH (1991) Construction of the Pauli potential, Pauli energy, and effective potential from the electron density. Phys Rev A 44:5521

    Article  CAS  Google Scholar 

  25. Gazquez JL, Robles JJ (1982) On the atomic kinetic energy functionals with full Weizsacker correction. Chem Phys 76:1467

    CAS  Google Scholar 

  26. Acharya PK, Bartolotti LJ, Sears SB, Parr RG (1980) An atomic kinetic energy functional with full Weizsacker correction. Proc Natl Acad Sci USA 77:6978

    Article  CAS  Google Scholar 

  27. Garcia-Aldea D, Alvarellos JE (2008) Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsäcker functional. Phys Rev A 77:022502

    Article  Google Scholar 

  28. Zhou BJ, Carter EA (2005) First principles local pseudopotential for silver: Towards orbital-free density-functional theory for transition metals. J Chem Phys 122:184108

    Article  Google Scholar 

  29. Zhou BJ, Ligneres VL, Carter EA (2005) Improving the orbital-free density functional theory description of covalent materials. J Chem Phys 122:044103

    Article  Google Scholar 

  30. Zhou BJ, Wang YA (2006) Orbital-corrected orbital-free density functional theory. J Chem Phys 124:081107

    Article  Google Scholar 

  31. King RA, Handy NC (2001) Kinetic energy functionals for molecular calculations. Mol Phys 99:1005

    Article  CAS  Google Scholar 

  32. Chacon E, Alvarellos JE, Tarazona P (1985) Nonlocal kinetic energy functional for nonhomogeneous electron systems. Phys Rev B 32:7868

    Article  CAS  Google Scholar 

  33. Chai JD, Weeks JD (2007) Orbital-free density functional theory: Kinetic potentials and ab initio local pseudopotentials. Phys Rev B 75:205122

    Article  Google Scholar 

  34. Karasiev VV, Trickey SB, Harris FE (2006) Born-Oppenheimer interatomic forces from simple, local kinetic energy density functionals. J Comput-Aided Mater Des 13:111

    Article  CAS  Google Scholar 

  35. Karasiev VV, Jones RS, Trickey SB, Harris FE (2009) Properties of constraint-based single-point approximate kinetic energy functionals. Phys Rev B 80:245120

    Article  Google Scholar 

  36. Parr RG, Bartolotti LJ (1983) Some remarks on the density functional theory of few-electron systems. J Phys Chem 87:2810

    Article  CAS  Google Scholar 

  37. Cedillo A (1994) A new representation for ground states and its Legendre transforms. Int J Quant Chem 52:231

    Article  Google Scholar 

  38. Ayers PW (2000) Density per particle as a descriptor of Coulomb systems. Proc Natl Acad Sci USA 97:1959

    Article  CAS  Google Scholar 

  39. Ayers PW, Cedillo A (2009) Chemical reactivity theory: A density functional view. Taylor and Francis, Boca Raton, p 269 (edited by PK Chattaraj)

    Google Scholar 

  40. Wigner E (1932) On the quantum correction for thermodynamic equilibrium. Phys Rev 40:749

    Article  CAS  Google Scholar 

  41. Wigner EP, Yourgrau W, van der Merwe A (1971) Perspectives in quantum theory. MIT, Cambridge, p 25

    Google Scholar 

  42. Cohen L (1966) Can quantum mechanics be formulated as a classical probability theory? Philos Sci 33:317

    Article  Google Scholar 

  43. Cohen L (1979) Local kinetic energy in quantum mechanics. J Chem Phys 70:788

    Article  CAS  Google Scholar 

  44. Cohen L (1984) Representable local kinetic energy. J Chem Phys 80:4277

    Article  CAS  Google Scholar 

  45. Ghosh SK, Berkowitz M, Parr RG (1984) Transcription of ground-state density-functional theory into a local thermodynamics. Proc Natl Acad Sci USA 81:8028

    Article  CAS  Google Scholar 

  46. Ayers PW, Parr RG, Nagy A (2002) Local kinetic energy and local temperature in the density-functional theory of electronic structure. Int J Quant Chem 90:309

    Article  CAS  Google Scholar 

  47. Cohen L (1966) Generalized phase-space distribution functions. J Math Phys 7:781

    Article  Google Scholar 

  48. Anderson JSM, Rodriguez Hernandez JI, Ayers PW (2010) How ambiguous is the local kinetic energy? J Phys Chem A 114:8884–8895

    Article  CAS  Google Scholar 

  49. Hoffmann-Ostenhof M, Hoffmann-Ostenhof T (1977) “Schrödinger inequalities” and asymptotic behavior of the electron density of atoms and molecules. Phys Rev A 16:1782

    Article  CAS  Google Scholar 

  50. Sagvolden E, Perdew JP (2008) Discontinuity of the exchange-correlation potential: Support for assumptions used to find it. Phys Rev A 77:012517

    Article  Google Scholar 

  51. Coleman J (1963) Structure of Fermion density matrices. Rev Mod Phys 35:668

    Article  Google Scholar 

  52. March NH (1986) The local potential determining the square root of the ground-state electron density of atoms and molecules from the Schrödinger equation. Phys Lett A 113(9):476

    Article  Google Scholar 

  53. Levy M, Ouyang H (1988) Exact properties of the Pauli potential for the square root of the electron density and the kinetic energy functional. Phys Rev A 38(2):625

    Article  Google Scholar 

  54. Dahl JP, Springborg M (1982) Wigner’s phase space function and atomic structure. Mol Phys 47:1001

    Article  CAS  Google Scholar 

  55. Dahl JP, Springborg M (1999) Comment on “Wigner phase-space distribution function for the hydrogen atom”. Phys Rev A 59:4099

    Article  CAS  Google Scholar 

  56. Mostowski LJ, Wodkiewicz K (2006) Hydrogen atom in phase space: the Wigner representation. J Phys A, Math Gen 39:14143

    Article  Google Scholar 

  57. Ayers PW (2006) Using the classical many-body structure to determine electronic structure: an approach using k-electron distribution functions. Phys Rev A 74:042502

    Article  Google Scholar 

  58. Ayers PW (2008) Constraints for hierarchies of many-electron distribution functions. J Math Chem 44:311

    Article  CAS  Google Scholar 

  59. Ziesche P (1994) Pair density functional theory—a generalized density functional theory. Phys Lett A 195:213

    Article  CAS  Google Scholar 

  60. Ziesche P (1996) Attempts toward a pair density functional theory. Int J Quant Chem 60:1361

    Article  Google Scholar 

  61. Ayers PW, Davidson ER (2007) Linear inequalities for diagonal elements of density matrices. Adv Chem Phys 134:443

    Article  Google Scholar 

  62. Levy M, Ziesche P (2001) The pair density functional of the kinetic energy and its simple scaling property. J Chem Phys 115:9110

    Article  CAS  Google Scholar 

  63. Ayers PW, Levy M (2005) Generalized density-functional theory: conquering the N-representability problem with exact functionals for the electron pair density and the second-order reduced density matrix. J Chem Sci 117:507

    Article  CAS  Google Scholar 

  64. Ayers PW, Golden S, Levy M (2006) Generalizations of the Hohenberg-Kohn theorem. J Chem Phys 124:054101

    Google Scholar 

  65. March NH, Santamaria R (1991) Non-local relation between kinetic and exchange energy densities in Hartree-Fock theory. Int J Quant Chem 39(4):585

    Article  CAS  Google Scholar 

  66. Nagy A (2002) Density-matrix functional theory. Phys Rev A 66:022505

    Article  Google Scholar 

  67. Ayers PW, Levy M (2005) Using the Kohn-Sham formalism in pair density-functional theories. Chem Phys Lett 416:211

    Article  Google Scholar 

  68. Higuchi M, Higuchi K (2007) A proposal of the approximate scheme for calculating the pair density. Physica B, Condens Matter 387:117

    Article  CAS  Google Scholar 

  69. Higuchi M, Miyasita M, Kodera M, Higuchi K (2007) Simultaneous equations for calculating the pair density. J Phys, Condens Matter 19:365219

    Article  CAS  Google Scholar 

  70. Higuchi M, Miyasita M, Kodera M, Higuchi K (2007) Density functional scheme for calculating the ground-state pair density. J Magn Magn Mater 310:990

    Article  CAS  Google Scholar 

  71. Higuchi M, Higuchi K (2007) Pair density-functional theory by means of the correlated wave function. Phys Rev A 75:042510

    Article  Google Scholar 

  72. Higuchi M, Higuchi K (2008) Pair density functional theory utilizing the non-interacting reference system: An effective initial theory. Phys Rev B 78:125101

    Article  Google Scholar 

  73. Higuchi K, Higuchi M (2009) J Phys, Condens Matter 21:064206

    Article  CAS  Google Scholar 

  74. Nagy A, Amovilli C (2004) Effective potential in density matrix functional theory. J Chem Phys 121:6640

    Article  CAS  Google Scholar 

  75. Nagy A (2006) Spherically and system-averaged pair density functional theory. J Chem Phys 125:184104

    Article  CAS  Google Scholar 

  76. Chakraborty D, Ayers PW (2011) Failure of the Weizsäcker kinetic energy functionals for higher-order electron distribution functions. J Math Chem (accepted). doi:10.1007/s10910-011-9860-1

  77. Sasaki F (1965) Eigenvalues of Fermion density matrices. Phys Rev 138:B1338

    Article  Google Scholar 

  78. Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic Press, New York

    Google Scholar 

  79. Coleman AJ, Yukalov VI (2000) Reduced density matrices: Coulson’s challenge. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

Financial and computational support from NSERC, the Canada Research Chairs, the Sloan Foundation, and Sharcnet are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Ayers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chakraborty, D., Ayers, P.W. (2011). Derivation of Generalized von Weizsäcker Kinetic Energies from Quasiprobability Distribution Functions. In: Sen, K. (eds) Statistical Complexity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3890-6_2

Download citation

Publish with us

Policies and ethics