Photocatalytic Degradation of Pollutants with Emphasis on Phthalocyanines and Related Complexes

  • Alexander B. Sorokin


Safe disposal of different harmful substances considered as pollutants is a key problem in the environmental context. Principal approaches for decontamination are briefly overviewed. The main focus is then placed on different photochemical methods used for degradation of pollutants. Application of phthalocyanine complexes for degradation of chlorinated phenols, dyes, etc. is discussed in more details. Three principal approaches involving these readily accessible catalysts are formulated: (i) chemical systems including a catalyst and an oxidant; (ii) photochemical systems based on photosensitizers absorbing UV and visible light for generation of reducing and oxidizing sites which react directly with molecules of pollutants and with molecular oxygen to form strong oxidants like hydroxyl radical; (iii) combined photo-assisted oxidation processes when external oxidant like hydrogen peroxide and light are used together to boost the oxidative degradation. Mechanistic aspects of different approaches are discussed to illustrate the essential features of different processes to provide some background for the choice of optimal system for new developments.


Photocatalytic Activity Oxidative Degradation Fumaric Acid Cyanuric Acid Phthalocyanine Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129CrossRefGoogle Scholar
  2. 2.
    Malato S, Fernandez-Ibanez P, Maldonado MI et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 149:1–59CrossRefGoogle Scholar
  3. 3.
    Hoffman MR et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  4. 4.
    Maldotti A, Molinari A, Amadelli R (2002) Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chem Rev 102:3811–3836CrossRefGoogle Scholar
  5. 5.
    Laine DF, Cheng IF (2007) The destruction of organic pollutants under mild reaction conditions: a review. Microchem J 85:183–193CrossRefGoogle Scholar
  6. 6.
    Kritzer P, Dinjus E (2001) An assessment of supercritical water oxidation (SCWO) existing problems, possible solutions and new reactor concepts. Chem Eng J 83:207–214CrossRefGoogle Scholar
  7. 7.
    Bhargava SK, Tardio J, Prasad J et al (2006) Wet oxidation and catalytic wet oxidation. Ind Eng Chem Res 45:1221–1258CrossRefGoogle Scholar
  8. 8.
    Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698CrossRefGoogle Scholar
  9. 9.
    Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84CrossRefGoogle Scholar
  10. 10.
    Tonucci L, Cortese A, Bressan M, D’Ambrosio P, d’Alessandro N (2011) Photosensitisation and photocatalysis for synthetic purposes. In: Nyokong T, Ahsen V (eds) Photosensitizers in medicine, environment, and security. Springer, Dordrecht, pp 473–529Google Scholar
  11. 11.
    Palmisano G, Augugliaro V, Pagliaro M et al (2007) Photocatalysis: a promising route for 21st century organic chemistry. Chem Commun 3425–3437CrossRefGoogle Scholar
  12. 12.
    Herrmann J-M (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 34:49–64CrossRefGoogle Scholar
  13. 13.
    Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A 328:8–26CrossRefGoogle Scholar
  14. 14.
    Malato S, Blanco J, Richter C et al (1998) Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Appl Catal B 17:347–356CrossRefGoogle Scholar
  15. 15.
    Zhao W, Ma W, Chen C et al (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBX under visible irradiation. J Am Chem Soc 126:4782–4783CrossRefGoogle Scholar
  16. 16.
    Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  17. 17.
    Andreozzi R, Caprio V, Insola A et al (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59CrossRefGoogle Scholar
  18. 18.
    Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631CrossRefGoogle Scholar
  19. 19.
    Bautista P, Mohedano AF, Casas JA et al (2008) An overview of the application of Fenton oxidation to industrial wastewaters treatment. J Chem Technol Biotechnol 83:1323–1338CrossRefGoogle Scholar
  20. 20.
    Zepp RG, Faust BC, Hoigné J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26:313–319CrossRefGoogle Scholar
  21. 21.
    Ikehata K, El-Din MG (2006) Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. J Environ Eng Sci 5:81–135CrossRefGoogle Scholar
  22. 22.
    Pera-Titus M, Garcia-Molina V, Baos MA et al (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B 47:219–256CrossRefGoogle Scholar
  23. 23.
    Cernjak W, Krutzler T, Glaser A et al (2003) PhotoFenton treatment of water containing natural phenolic pollutants. Chemosphere 50:71–78CrossRefGoogle Scholar
  24. 24.
    Bigda RJ (1995) Consider Fenton’s chemistry for wastewater treatment. Chem Eng Prog 91:62–66Google Scholar
  25. 25.
    Labat G, Séris J-L, Meunier B (1990) Oxidative degradation of aromatic pollutants by chemical models of ligninase based on porphyrin complexes. Angew Chem Int Ed Engl 29:1471–1473CrossRefGoogle Scholar
  26. 26.
    Sorokin A, Séris J-L, Meunier B (1995) Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron phthalocyanines. Science 268:1163–1166CrossRefGoogle Scholar
  27. 27.
    Sorokin A, Meunier B (1996) Oxidative degradation of polychlorinated phenols catalyzed by metallophthalocyanines. Chem Eur J 2:1308–1317CrossRefGoogle Scholar
  28. 28.
    Sorokin A, De Suzzoni-Dezard S, Poullain D et al (1996) CO2 as the ultimate degradation product in the H2O2 oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine. J Am Chem Soc 118:7410–7411CrossRefGoogle Scholar
  29. 29.
    Meunier B, Sorokin A (1997) Oxidation of pollutants catalyzed by metallophthalocyanines. Acc Chem Res 30:470–476CrossRefGoogle Scholar
  30. 30.
    Hadasch A, Meunier B (1999) Oxidation of dichloroanilines and related anilides catalyzed by iron(III) tetrasulfonatophthalocyanine. Eur J Inorg Chem 2319–2325Google Scholar
  31. 31.
    Sorokin A, Fraisse L, Rabion A, Meunier B (1997) Metallophthalocyanine-catalyzed oxidation of catechols by H2O2 and its surrogates. J Mol Catal A 117:103–114CrossRefGoogle Scholar
  32. 32.
    Sörensen M, Zurell S, Frimmel FH (1998) Degradation pathway of the photochemical oxidation of ethylenediaminetetraacetate (EDTA) in the UV/H2O2 process. Acta Hydrochim Hydrobiol 26:109–115CrossRefGoogle Scholar
  33. 33.
    Pirkanniemi K, Sillanpää M, Sorokin A (2003) Degradative hydrogen peroxide oxidation of chelates catalysed by metallophthalocyanines. Sci Total Environ 307:11–18CrossRefGoogle Scholar
  34. 34.
    Hadasch A, Sorokin A, Rabion A et al (1997) Oxidation of 2,4,6-trichlorophenol (TCP) catalyzed by iron tetrasulfophthalocyanine (FePcS) supported on a cationic ion-exchange resin. Bull Soc Chim Fr 134:1025–1032Google Scholar
  35. 35.
    Sorokin A, Meunier B (1994) Efficient H2O2 oxidation of chlorinated phenols catalyzed by supported iron phthalocyanines. J Chem Soc Chem Commun 1799–1800CrossRefGoogle Scholar
  36. 36.
    Sanchez M, Chap N, Cazaux JP, Meunier B (2001) Metallophthalocyanines linked to organic copolymers as efficient oxidative supported catalysts. Eur J Inorg Chem 1775–1783CrossRefGoogle Scholar
  37. 37.
    Tao X, Ma W, Zhang T, Zhao J (2001) Efficient photooxidative degradation of organic compounds in the presence of iron tetrasulfophthalocyanine under visible light irradiation. Angew Chem Int Ed 40:3014–3016CrossRefGoogle Scholar
  38. 38.
    Tao X, Ma W, Zhang T, Zhao J (2002) A novel approach for the oxidative degradation of organic pollutants in aqueous solutions mediated by iron tetrasulfophthalocyanine under visible light radiation. Chem Eur J 8:1321–1326CrossRefGoogle Scholar
  39. 39.
    Tao X, Ma W, Li J (2003) Efficient degradation of organic pollutants mediated by immobilized iron tetrasulfophthalocyanine under visible light irradiation. Chem Commun 80–81CrossRefGoogle Scholar
  40. 40.
    Héquet V, Le Cloirec P, Gonzalez C, Meunier B (2000) Photocatalytic degradation of atrazine by porphyrin and phthalocyanine complexes. Chemosphere 41:379–386CrossRefGoogle Scholar
  41. 41.
    Nyokong T (2007) Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord Chem Rev 251:1707–1722CrossRefGoogle Scholar
  42. 42.
    Ozoemena K, Kuznetsova N, Nyokong T (2001) Comparative photosensitised transformation of polychlorophenols with different sulfonated metallophthalocyanine complexes in aqueous medium. J Mol Catal A 176:29–40CrossRefGoogle Scholar
  43. 43.
    Lukyanets EA, Nemykin VN (2010) The key role of peripheral substituents in the chemistry of phthalocyanines and their analogs. J Porphyrins Phthalocyanines 14:1–40CrossRefGoogle Scholar
  44. 44.
    Gürol I, Durmus M, Ahsen V (2010) Photophysical and photochemical properties of fluorinated and nonfluorinated n-propanol-substituted zinc phthalocyanines. Eur J Inorg Chem 1220–1230CrossRefGoogle Scholar
  45. 45.
    Ozoemena K, Kuznetsova N, Nyokong T (2001) Photosensitized transformation of 4-chlorophenol in the presence of aggregated and non-aggregated metallophthalocyanines. J Photochem Photobiol A 139:217–224CrossRefGoogle Scholar
  46. 46.
    Marais E, Klei R, Antunes E, Nyokong T (2007) Photocatalysis of 4-nitrophenol using zinc phthalocyanine complexes. J Mol Catal A 261:36–42CrossRefGoogle Scholar
  47. 47.
    Wöhrle D, Suvorova O, Gerdes R et al (2004) Efficient oxidations and photooxidations with molecular oxygen using metal phthalocyanines as catalysts and photocatalysts. J Porphyrins Phthalocyanines 8:1020–1041CrossRefGoogle Scholar
  48. 48.
    Gerdes R, Wöhrle D, Spiller W et al (1997) Photo-oxidation of phenol and monochlorophenols in oxygen-saturated aqueous solutions by different photosensitizers. J Photochem Photobiol A 111:65–74CrossRefGoogle Scholar
  49. 49.
    Nensala N, Nyokong T (1997) Photosensitization reactions of neodymium, dysprosium and lutetium diphthalocyanine. Polyhedron 16:2971–2976CrossRefGoogle Scholar
  50. 50.
    Nensala N, Nyokong T (2000) Photocatalytic properties of neodymium diphthalocyanine towards the transformation of 4-chlorophenol. J Mol Catal A 164:69–76CrossRefGoogle Scholar
  51. 51.
    Agboola B, Ozoemena KI, Nyokong T (2006) Comparative efficiency of immobilized non-transition metal phthalocyanine photosensitizers for the visible light transformation of chlorophenols. J Mol Catal A 248:84–92CrossRefGoogle Scholar
  52. 52.
    Xiong Z et al (2005) Enhanced photodegradation of 2,4,6-trichlorophenol over palladium phthalocyaninesulfonate modified organobentonite. Langmuir 21:10602–10607CrossRefGoogle Scholar
  53. 53.
    Huang Y, Li J, Ma W et al (2004) Efficient H2O2 oxidation of organic pollutants catalyzed by supported iron sulfophenylporphyrin under visible light irradiation. J Phys Chem B 108:7263–7270CrossRefGoogle Scholar
  54. 54.
    Mele G, Del Sole R, Vasapollo G et al (2005) TRMC, XPS, and EPR characterizations of polycrystalline TiO2 porphyrin impregnated powders and their catalytic activity for 4-nitrophenol photodegradation in aqueous suspension. J Phys Chem B 109:12347–12352CrossRefGoogle Scholar
  55. 55.
    Sun Q, Xu Y (2009) Sensitization of TiO2 with Aluminium Phthalocyanine: factors influencing the efficiency for chlorophenol degradation in water under visible light. J Phys Chem C 113:12387–12394CrossRefGoogle Scholar
  56. 56.
    Kölle U, Moser J, Grätzel M (1985) Dynamics of interfacial charge-transfer reactions in semiconductor dispersions. Reduction of cobaltoceniumdicarboxylate in colloidal titania. Inorg Chem 24:2253–2258CrossRefGoogle Scholar
  57. 57.
    Anderson S, Constable EC, Dare-Edwards MP et al (1979) Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser. Nature Lond 280:571–573CrossRefGoogle Scholar
  58. 58.
    Ghosh PK, Spiro TG (1980) Photoelectrochemistry of tris(bipyridyl)ruthenium(II) covalently attached to n-type tin(IV) oxide. J Am Chem Soc 102:5543–5549CrossRefGoogle Scholar
  59. 59.
    Giraudeau A, Fan FF, Bard A (1980) Semiconductor electrodes. 30. Spectral sensitization of the semiconductors titanium oxide (n-TiO2) and tungsten oxide (n-WO3) with metal phthalocyanines. J Am Chem Soc 102:5137–5142CrossRefGoogle Scholar
  60. 60.
    Special issue on dye sensitized solar cells (2004) Coord Chem Rev 248(issues 13–14)Google Scholar
  61. 61.
    Martinez-Diaz MV, de la Torre G, Torres T (2010) Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem Commun 46:7090–7108CrossRefGoogle Scholar
  62. 62.
    Clifford JN, Yahioglu G, Milgrom LR et al (2002) Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films. Chem Commun 1260–1261CrossRefGoogle Scholar
  63. 63.
    Iliev V (2002) Phthalocyanine-modified titania – catalyst for photooxidation of phenols by irradiation with visible light. J Photochem Photobiol A 151:195–199CrossRefGoogle Scholar
  64. 64.
    Mele G, Del Sole R, Vasapollo G et al (2003) Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)-porphyrin or Cu(II)-phthalocyanine. J Catal 217:334–342Google Scholar
  65. 65.
    Chen F, Deng Z, Li X et al (2005) Visible light detoxification by 2,9,16,23-tetracarboxyl phthalocyanine copper modified amorphous titania. Chem Phys Lett 415:85–88CrossRefGoogle Scholar
  66. 66.
    Mele G, Garcia-Lopez E, Palmisano L et al (2007) Photocatalytic degradation od 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with lanthanide double-Decker phthalocyanine complexes. J Phys Chem C 111:6581–6588CrossRefGoogle Scholar
  67. 67.
    Sorokin AB, Kudrik EV, Bouchu D (2008) Bio-inspired oxidation of methane in water catalyzed by N-bridged diiron phthalocyanine complex. Chem Commun 2562–2564CrossRefGoogle Scholar
  68. 68.
    Sorokin AB, Kudrik EV (2008) N-Bridged diiron phthalocyanine catalyzes oxidation of benzene by H2O2 via benzene oxide with NIH Shift evidenced using benzene-1,3,5-d 3 as a probe. Chem Eur J 14:7123–7126Google Scholar
  69. 69.
    Isci U, Afanasiev P, Millet JM et al (2009) Preparation and characterization of μ-nitrido diiron phthalocyanines with electron-withdrawing substituents: application for catalytic aromatic oxidation. Dalton Trans 7410–7420CrossRefGoogle Scholar
  70. 70.
    Afanasiev P, Bouchu D, Kudrik EV et al (2009) Stable N-bridged diiron (IV) phthalocyanine cation-radical complexes: synthesis and properties. Dalton Trans 9828–9836CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut de Recherches sur la Catalyse et l’Environnement de Lyon – IRCELYONUMR 5256, Université Lyon 1Villeurbanne CedexFrance

Personalised recommendations