The Contribution of Theoretical Chemistry to the Drug Design in Photodynamic Therapy

  • Angelo D. Quartarolo
  • Nino Russo
  • Emilia Sicilia
  • Carlo Adamo


The possibility to design new photosensitizers active in photodynamic therapy starting from computed chemical physics electronic and geometrical properties by using the density functional theory is presented. In particular, we were concerned with the porphyrin-like systems able to activate the singlet O2 excited state (Type II reactions). The investigated properties include the energy gap between ground and excited states with different spin multiplicities (Singlet-Triplet) and the electronic excitation energies (Q band of the UV-Vis spectra).


Photodynamic Therapy Polarizable Continuum Model Spin Multiplicity Oxidative Cellular Damage Density Functional Theory Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the Università della Calabria and MIUR (PRIN 2008F5A3AF_005) is gratefully acknowledged.


  1. 1.
    MacDonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines 5:105–129CrossRefGoogle Scholar
  2. 2.
    Van Tenten Y, Schuitmaker HJ, De Wolf A, Willekens B, Vrensen GFJM, Tassignon MJ (2001) The effect of photodynamic therapy with bacteriochlorin a on lens epithelial cells in a capsular bag model. Exp Eye Res 72:41–48CrossRefGoogle Scholar
  3. 3.
    Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387CrossRefGoogle Scholar
  4. 4.
    Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905CrossRefGoogle Scholar
  5. 5.
    Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450CrossRefGoogle Scholar
  6. 6.
    O’Connor AE, William M, Gallagher WM, Byrne AT (2009) Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 85:1053–1074CrossRefGoogle Scholar
  7. 7.
    Sternberg ED, Dolphin D, Bruckner C (1998) Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202CrossRefGoogle Scholar
  8. 8.
    Nyman ES, Hynninen PH (2004) Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B Biol 73:1–28CrossRefGoogle Scholar
  9. 9.
    Gorman A, Killoran J, O’Shea C (2004) In vitro demonstration of the heavy-atom effect for photodynamic therapy. J Am Chem Soc 126:10619–10631CrossRefGoogle Scholar
  10. 10.
    Ramaiah D, Eckert I, Arun KT, Weidenfeller L, Epe B (2002) Squaraine dyes for photodynamic therapy: study of their cytotoxicity and genotoxicity in bacteria and mammalian cells. Photochem Photobiol 76:672–677CrossRefGoogle Scholar
  11. 11.
    Blume JE, Oseroff AR (2007) Aminolevulinic acid photodynamic therapy for skin cancers. Dermatol Clin 25:5–14CrossRefGoogle Scholar
  12. 12.
    Dougherty TJ, Potter WR, Weishaupt KR (1984) The structure of the active component of hematoporphyrin derivative. Prog Clin Biol Res 170:301–314Google Scholar
  13. 13.
    Selman SH, Albrecht D, Keck RW, Brennan P, Kondo S (2001) Studies of tin ethyl etiopurpurin photodynamic therapy of the canine prostate. J Urol 165:1795–1801CrossRefGoogle Scholar
  14. 14.
    Renschler MF, Yuen AR, Panella TJ, Wieman TJ, Dougherty S, Esserman L, Panjehpour M, Taber SW, Fingar VH, Lowe E, Engel JS, Lum B, Woodburn KW, Cheong WF, Miller RA (1998) Photodynamic therapy trials with lutetium texaphyrin (Lu-Tex) in patients with locally recurrent breast cancer. Proc SPIE Int Opt Eng 3247:35–39CrossRefGoogle Scholar
  15. 15.
    Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757CrossRefGoogle Scholar
  16. 16.
    Casida ME (1996) Time-dependent density functional response theory of molecular systems: theory, computational methods, and functionals. In: Seminario JM (ed) Recent developments and applications in density-functional theory. Elsevier Science B. V, AmsterdamGoogle Scholar
  17. 17.
    Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) Assessment of functionals for TD-DFT calculations of singlet  −  triplet transitions. J Chem Theory Comput 5:2420–2435CrossRefGoogle Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc, WallingfordGoogle Scholar
  19. 19.
    Ahlrichs R, Bär M, Häser M, Horn M, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system Turbomole. Chem Phys Lett 162:165–169CrossRefGoogle Scholar
  20. 20.
    Becke AD (1993) A new mixing of hartree-fock and local density-functional theories. J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  21. 21.
    Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985CrossRefGoogle Scholar
  22. 22.
    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  23. 23.
    Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization type basis set for second-row elements. J Chem Phys 77:3654–3665CrossRefGoogle Scholar
  24. 24.
    Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distribution of the solvent. Chem Rev 94:2027–2094CrossRefGoogle Scholar
  25. 25.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  26. 26.
    Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717CrossRefGoogle Scholar
  27. 27.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2(5):799–805Google Scholar
  28. 28.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094CrossRefGoogle Scholar
  29. 29.
    Jacquemin D, Perpète EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42:326–334CrossRefGoogle Scholar
  30. 30.
    Petit L, Quartarolo A, Adamo C, Russo N (2006) Spectroscopic properties of porphyrin-like photosensitizers: insights from theory. J Phys Chem B 110:2398–2404CrossRefGoogle Scholar
  31. 31.
    Lanzo I, Russo N, Sicilia E (2008) First-principle time-dependent study of magnesium-containing porphyrin-like compounds potentially useful for their application in photodynamic therapy. J Phys Chem B 112:4123–4130CrossRefGoogle Scholar
  32. 32.
    Quartarolo AD, Sicilia E, Russo N (2009) On the potential use of squaraine derivatives as photosensitizers in photodynamic therapy: a TDDFT and RICC2 survey. J Chem Theory Comput 5:1849–1857CrossRefGoogle Scholar
  33. 33.
    Perpète EA, Jacquemin D (2009) J Mol Struct THEOCHEM 914:100–105CrossRefGoogle Scholar
  34. 34.
    Herzberg G (1950) Spectra of diatomic molecules. Van Nostrand Reinhold, New YorkGoogle Scholar
  35. 35.
    Gouterman M, Wagnière G, Snyder L (1963) Spectra of porphyrins: part II. Four orbital model. J Mol Spectrosc 11:108–127CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Angelo D. Quartarolo
    • 1
  • Nino Russo
    • 2
  • Emilia Sicilia
    • 1
  • Carlo Adamo
    • 3
  1. 1.Dipartimento di Chimica and Centro di Calcolo ad Alte Prestazioni per Elaborazioni, Parallele e Distribuite-Centro d’Eccellenza MIURUniversita’ della CalabriaArcavacata di Rende (CS)Italy
  2. 2.Dipartimento di ChimicaUniversità della CalabriaRendeItaly
  3. 3.Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation pour l’EnergieCNRS UMR 7575, Ecole Nationale Supérieure de Chimie de Paris – Chimie ParistechParis Cedex 05France

Personalised recommendations