Bifunctional Acid-Base Catalysis

Chapter

Abstract

Acid-base catalysis with bifunctional catalysts is a very prominent catalytic strategy in both small-molecule organocatalysts as well as enzyme catalysis. In both worlds, small-molecule catalysts and enzymatic catalysis, a variety of different general acids or hydrogen bond donors are used. In this chapter, important parallels between small molecule catalysts and enzymes are discussed, and a comparison is also made to the emerging field of frustrated Lewis pair catalysis.

Keywords

Hydrogen Bond Donor Bifunctional Catalyst Oxyanion Hole Tetrahedral Intermediate Conjugate Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    For a recent overview, see: Knowles RR, Jacobsen EN (2010) Proc Natl Acad Sci, doi: 10.1073/pnas.1006402107Google Scholar
  2. 2.
    For a comprehensive review of thiourea and urea catalysts, see: Kotke M, Schreiner P (2009) ‘(Thio)urea Organocatalysts.’ In: Pihko PM (ed) Hydrogen Bonding in Organic Synthesis, Wiley-VCH, Weinherm, Germany p 141Google Scholar
  3. 3.
    Hiemstra H, Wynberg H (1981) J Am Chem Soc 103:417CrossRefGoogle Scholar
  4. 4.
    Okino T, Hoashi Y, Takemoto Y (2003) J Am Chem Soc 125:12672CrossRefGoogle Scholar
  5. 5.
    Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y (2005) J Am Chem Soc 127:119CrossRefGoogle Scholar
  6. 6.
    Hoashi Y, Yabuta T, Takemoto Y (2004) Tetrahedron Lett 45:9185CrossRefGoogle Scholar
  7. 7.
    Hoashi Y, Yabuta T, Yuan P, Miyabe H, Takemoto Y (2006) Tetrahedron 62:365CrossRefGoogle Scholar
  8. 8.
    Hamza A, Schubert G, Soos T, Papai I (2006) J Am Chem Soc 128:13151CrossRefGoogle Scholar
  9. 9.
    (a)Tian SK, Chen YG, Hang JF, Tang L, McDaid P, Deng L (2004) Acc Chem Res 37:621; (b) Doyle AG, Jacobsen EN (2007) Chem Rev 107:5713Google Scholar
  10. 10.
    Li BJ, Jiang L, Liu M, Chen YC, Ding LS, Wu Y (2005) Synlett 603Google Scholar
  11. 11.
    Ye J X, Dixon D J, Hynes P S (2005) Chem Commun 4481Google Scholar
  12. 12.
    Malerich JP, Hagihara K, Rawal VH (2008) J Am Chem Soc 130:14416CrossRefGoogle Scholar
  13. 13.
    For other reviews of this area, see: (a) Takemoto Y (2005) Org Biomol Chem 3:4299; (b) Taylor MS, Jacobsen EN (2006) Angew Chem Int Ed 45:1520; (c) Connon SJ (2006) Chem Eur J 12:5418; (d) Miyabe H, Takemoto Y (2008) Bull Chem Soc Jpn 81:785. (e) Connon SJ (2009) Synlett 354. (See also ref 9b)Google Scholar
  14. 14.
    Vakulya B, Varga S, Csampai A, Soos T (2005) Org Lett 7:1967Google Scholar
  15. 15.
    McCooey SH, Connon SJ (2005) Angew Chem Int Ed 44:6367CrossRefGoogle Scholar
  16. 16.
    (a) Tillman AL, Ye JX, Dixon DJ (2006) Chem Commun 1191. For a review, see (b) Tin A, Schaus SE (2007) Eur J Org Chem 5797–5815Google Scholar
  17. 17.
    Kohler M, Yost JM, Garnsey MR, Coltart DM (2010) Org Lett 12:3376–3379CrossRefGoogle Scholar
  18. 18.
    (a) Marcelli T, van Maarseveen JH, Hiemstra H (2006) Angew Chem Int Ed 45:7496–7504; (b) Palomo C, Oiarbide M, Laso A (2007) Eur J Org Chem 2007:2561–2574; (c) Marcelli T, van der Haas RNS, van Maarseveen JH, Hiemstra H (2006) Angew Chem Int Ed 45:929–931; (d) Marcelli T, van der Haas RNS, van Maarseveen JH, Hiemstra H (2005) Synlett 18:2817–2819Google Scholar
  19. 19.
    Liao Y-H, Liu X-L, Wu Z-J, Cun L-F, Zhang X-M, Yuan W-C (2010) Org Lett 12:2896CrossRefGoogle Scholar
  20. 20.
    Liu TY, Long J, Li BJ, Jiang L, Li R, Wu Y, Ding LS, Chen YC (2006) Org Biomol Chem 4:2097CrossRefGoogle Scholar
  21. 21.
    Gao Y, Ren Q, Wang L, Wang J (2010) Chem Eur J 16:13068CrossRefGoogle Scholar
  22. 22.
    For another interesting example of a multifunctional Brønsted acid catalyst, see: (a) Nugent BM, Yoder RA, Johnston JN (2004) J Am Chem Soc 126:3418; (b) Davis TA, Wilt JC, Johnston JN (2010) J Am Chem Soc 132:2880Google Scholar
  23. 23.
    Lee JW, Ryu TH, Oh JS, Bae HY, Jang HB, Song CE (2009) Chem Commun 7224Google Scholar
  24. 24.
    (a) Oh SH, Rho HS, Lee JH, Lee JE, Youk SH, Chin J, Song CE (2008) Angew Chem Int Ed 47:7872; (b) Park SE, Nam EH, Jang HB, Oh JS, Some S, Lee YS, Song CE (2010) Adv Synth Catal 352:2211Google Scholar
  25. 25.
    It should be noted that the presence of a hydrogen bond donor/ Brønsted acid is not required for high enantioselectivities in alcoholysis of meso anhydrides. For leading references to other cinchona- alka loid based catalysts for this transformation, see: Li H, Liu X, Wu F, Tang L, Deng L (2010) Proc Nat Acad Sci, doi: 10.1073/pnas.1004439107Google Scholar
  26. 26.
    For a comprehensive review of oxyanion holes in catalysis, see: Pihko P, Rapakko S, Wierenga RK (2009) ‘Oxyanion Holes and Their Mimics’ In: Pihko PM (ed) Hydrogen Bonding in Organic Synthesis, Wiley-VCH, Weinherm, Germany p 43Google Scholar
  27. 27.
    (a) For reviews, see: Frey PA, (2004) J Phys Org Chem 17:511; (b) Hedstrom L (2002) Chem Rev 102:4501; (c) Sedolisins (serine-carboxyl peptidases), such as kumamolisin-As, offer an interesting counterexample. In this carboxypeptidase, the oxyanion hole includes an aspartate group which appears to protonate the developing oxyanion. For a computational study of this system, see: Guo H, Wlodawer A, Guo H (2005) J Am Chem Soc 127:15662Google Scholar
  28. 28.
    (a) Blow D (2000) Structure 8:77; (b) Henderson R (1970) J Mol Biol 54:341Google Scholar
  29. 29.
    Bahnson BJ, Anderson VE, Petsko GA (2002) Biochemistry 41:2621CrossRefGoogle Scholar
  30. 30.
    Engel CK, Mathieu M, Zeelen JP, Hiltunen JK, Wierenga RK (1996) EMBO J 15:5135Google Scholar
  31. 31.
    Willadsen P, Eggerer H (1975) Eur J Biochem 54:247CrossRefGoogle Scholar
  32. 32.
    (a) Hamed RB, Batchelar ET, Clifton IJ, Schofield CJ (2008) Cell Mol Life Sci 65:2507; (b) Holden HM, Benning MM, Haller T, Gerlt JA (2001) Acc Chem Res 34:145Google Scholar
  33. 33.
    For recent reviews of frustrated Lewis pairs, see: (a) Stephan DW, Erker G (2010) Angew Chem Int Ed 49:46; (b) Stephan DW (2009) Dalton Trans 3129Google Scholar
  34. 34.
    (a) Welch GC, Stephan DW (2007) J Am Chem Soc 129:1880; (b) Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Science 314:1124Google Scholar
  35. 35.
    Chase PA, Welch GC, Jurca T, Stephan DW (2007) Angew Chem 119:8196; (2007) Angew Chem Int Ed 46: 8050Google Scholar
  36. 36.
    For hydrogenation with P(tBu)3/B(C6F5)3 pair see Rokob TA, Hamza A, Stirling A, Pápai I (2009) J Am Chem Soc 131:2029Google Scholar
  37. 37.
    (a) Spies P, Schwendemann S, Lange S, Kehr G, Frohlich R, Erker G (2008) Angew Chem 120:7654; (2008) Angew Chem Int Ed 47:7543; (b) Axenov KV, Kehr G, Frohlich R, Erker G (2009) J Am Chem Soc 131:3454; (c) Schwendemann S, Tumay TA, Axenov KV, Peuser I, Kehr G, Frohlich R, Erker G (2010) Organometallics 29:1067Google Scholar
  38. 38.
    (a) Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskela M, Repo T, Pyykko P, Rieger B (2008) J Am Chem Soc 130:14117; (b) Sumerin V, Schulz F, Nieger M, Atsumi M, Wang C, Leskela M, Pyykko P, Repo T, Rieger B (2009) J Organomet Chem 694:2654Google Scholar
  39. 39.
    The terms ansa-aminoborane [ansa (lat.)  =  “handle”] refer to the use of the successful concept of ansa- metallocenes where a bridge between two Cp-ligands forces them into a distinct geometry and hence nfluences the specific reactivity of these compounds.Google Scholar
  40. 40.
    Chen C, Wang Y, Klankermayer J (2010) Angew Chem Int Ed 49:9475CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of JyväskyläJyväskyläFinland

Personalised recommendations