Advertisement

Some “Special” Topics: Solvation, Singlet Diradicals, A Note on Heavy Atoms and Transition Metals

  • Errol G. Lewars
Chapter

Abstract

For some purposes solution-phase computations are necessary, e.g. for understanding certain reactions, and for the prediction of pK a in solution. For introducing the effects of solvation there are two methodologies (and a hybrid of these two): explicit solvation and continuum solvation.

Some molecular species are not calculated properly by straightforward model chemistries; these include singlet diradicals and some excited state species. For these the standard method is the complete active space approach, CAS (CASSCF, complete active space SCF). This is a limited version of configuration interaction, in which electrons are promoted from and to a carefully chosen set of molecular orbitals.

For systems with heavy atoms we often employ pseudopotential basis sets (frequently relativistic), which reduce the computational burden of large numbers of electrons. Transition metals present problems beyond those of main-group heavy atoms: not only can relativistic effects be significant, but electron d- or f-levels, variably perturbed by ligands, make possible several electronic states. DFT calculations, with pseudopotentials, are the standard approach for computations on such compounds.

Keywords

Active Space Solvation Free Energy Relative Minimum Complete Active Space Continuum Solvation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Modern physics views the vacuum as a “false vacuum”, seething with “virtual particles”: The study of these concepts belongs to quantum field theory: (a) For a reflective exposition of this largely in words (!) See Teller P (1995) An interpretive introduction to quantum field theory. Princeton University Press, Princeton, NJ. (b) A detailed account of the subject by a famous participant is given in Weinberg S (1995) The quantum theory of fields. Cambridge University Press, Cambridge, UK; particularly Volume I, Foundations.Google Scholar
  2. 2.
    Krieger JH (1992) Chemical and Engineering News 11 May, p 40Google Scholar
  3. 3.
    Luberoff BJ (1992) Chemical and Engineering News 15 June, p 2Google Scholar
  4. 4.
    Pilar FJ (1992) Chemical and Engineering News 29 June, p 2Google Scholar
  5. 5.
    Sousa SP, Fernandes PA, Ramos MJ (2009) J Phys Chem A 113:14231CrossRefGoogle Scholar
  6. 6.
    (a) Kenny JP, Krueger KM, Rienstra-Kiracofe JC, Schaefer HF (2001) J Phys Chem A 105:7745. (b) Lewars E (2000) J Mol Struct (Theochem) 507:165. (c) Lewars E (1998) J Mol Struct (Theochem) 423:173, and references therein to earlier workGoogle Scholar
  7. 7.
    Fliegl H, Sundholm D, Taubert S, Jusélius J, Klopper W (2009) J Phys Chem A 113:8668CrossRefGoogle Scholar
  8. 8.
    (a) Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) J Am Chem Soc 124:6421, and references therein. (b) Liptak MD, Shields GC (2001) J Am Chem Soc 123:7314Google Scholar
  9. 9.
    (a) Calculations on the stability of N5+N5 in vacuo and in a crystal: Fau S, Wilson KJ, Bartlett RJ (2002) J Phys Chem A 106:4639 Correction: (2004) J Phys Chem A 108:236. (b) Decomposition of polynitrohexaazaadamantanes in crystals: Xu X-J, Zhu W-H, Xiao H-M (2008) J Mol Struct (Theochem) 853:1. (c) Nitroexplosives in crystals: Zhang L, Zybin SV, van Duin ACT, Dasgupta S, Goddard WA III (2009) J Phys Chem A 113:10619. (d) General approach to calculating bulk properties of crystals: Hu Y-H (2003) J Am Chem Soc 125:4388. (e) Ab initio modelling of crystals: Dovesi R, Civalleri B, Orlando R, Roetti C, Saunders VR (2005). In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, vol 21. Wiley, Hoboken, NJ (f) Molecular dynamics applied to crystals, liquids, and clusters: Tuckerman ME, Ungar pJ, Rosenvinge T, Klein ML (1996) J Phys Chem 100:12878Google Scholar
  10. 10.
    Bachrach SM (2007) Computational organic chemistry. Wiley-Interscience, Hoboken, NJ, Chapter 6Google Scholar
  11. 11.
    The minimum requirements for solvating alanine have been examined with the aid of molecular dynamics. Thar J, Zahn S, Kirchner B (2008) 112:1456CrossRefGoogle Scholar
  12. 12.
    See e.g. (a) Leach AR (2001) Molecular modelling, 2nd edn. Prentice Hall, Essex, England, Chapter 7Google Scholar
  13. 13.
    Acc Chem Res (2002), 35(6); issue devoted largely to this topicGoogle Scholar
  14. 14.
    Bickelhaupt FM, Baerends EJ, Nibbering NMM (1996) Chem Eur J 2:196CrossRefGoogle Scholar
  15. 15.
    Yamataka H, Aida M (1998) Chem Phys Lett 289:105CrossRefGoogle Scholar
  16. 16.
    Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, UK, Chapter 11Google Scholar
  17. 17.
    Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, Hoboken, NJ, sections 14.6, 14.7Google Scholar
  18. 18.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161CrossRefGoogle Scholar
  19. 19.
    Tomasi J, Persico M (1994) Chem Rev 94:2027CrossRefGoogle Scholar
  20. 20.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995CrossRefGoogle Scholar
  21. 21.
    Langlet J, Claverie P, Caillet J, Pullman A (1988) J Phys Chem 92:1617CrossRefGoogle Scholar
  22. 22.
    (a) Cramer CJ, Truhlar DG (2008) Acc Chem Res 41:760. (b) Useful for references to solvation models is the Minnesota Solvation Models and Solvation Software website: http://comp.chem.umn.edu/solvation/
  23. 23.
    Dielectric constants and dipole moments were taken from a table in Wikipedia, http://en.wikipedia.org/wiki/Solvent
  24. 24.
    (a) Benassi R, Ferrari E, Lazarri S, Spagnolo F, Saladini M (2008) IR, UV, NMR. J Mol Struct 892:168. (b) Barone V, Crescenzi O, Improta R (2002) IR, UV, NMR, EPR. Quantitative structure-activity relationships 21:105. (c) Sadlej J, Pecul M, Mennucci B, Cammi R (eds) (2007) NMR. Continuum solvation models in chemical physics. Wiley, New York, p 125Google Scholar
  25. 25.
    Foresman JP, Keith TA, Wiberg RB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098CrossRefGoogle Scholar
  26. 26.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669CrossRefGoogle Scholar
  27. 27.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799Google Scholar
  28. 28.
    Klamt A (1995) J Phys Chem 99:2224CrossRefGoogle Scholar
  29. 29.
    Klamt A, Jonas V, Burger T, Lorenz JCW (1998) J Phys Chem A 102:5074CrossRefGoogle Scholar
  30. 30.
    (a) COSMOlogic: Burscheider Str. 515, 51381 Leverkusen, Germany. http://www.cosmologic.de/index.php. (b) “COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design [With CDROM]” (2005), Andreas Klamt, Elsevier, Amsterdam
  31. 31.
    Spartan is an integrated molecular mechanics, ab initio and semiempirical program with an input/output graphical interface. It is available in UNIX workstation and PC versions: Wavefunction Inc., http://www.wavefun.com, 18401 Von Karman, Suite 370, Irvine CA 92715, USA. As of mid-2009, the latest version of Spartan was Spartan 09. The name arises from the simple or “spartan” user interface
  32. 32.
    Smith MB, March J (2001) Advanced organic chemistry. Wiley, New York, pp 390–393, numerous discussions and referencesGoogle Scholar
  33. 33.
    Mo Y, Gao J (2000) J Comp Chem 21:1458CrossRefGoogle Scholar
  34. 34.
    Ensing B, Meijer EJ, Bloechl PE, Baerends EV (2001) J Phys Chem A 105:3300CrossRefGoogle Scholar
  35. 35.
    Freedman H, Truong TN (2005) J Phys Chem B 109:4726CrossRefGoogle Scholar
  36. 36.
    Albery WJ, Kreevoy MM (1978) Adv Phys Org Chem 16:87Google Scholar
  37. 37.
    Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalto, CA, p 171Google Scholar
  38. 38.
    Olmstead WN, Brauman JI (1977) J Am Chem Soc 99:4219CrossRefGoogle Scholar
  39. 39.
    Bento AP, Solà M, Bickelhaupt FM (2005) J Comp Chem 26:1497CrossRefGoogle Scholar
  40. 40.
    Bachrach SM (2007) Computational organic chemistry. Wiley-Interscience, Hoboken, NJ, section 5.1Google Scholar
  41. 41.
    Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) J Phys Chem A 107:9380CrossRefGoogle Scholar
  42. 42.
    Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem A 110:2493CrossRefGoogle Scholar
  43. 43.
    Klamt A (2009) Acc Chem Res 42:489CrossRefGoogle Scholar
  44. 44.
    Cramer CJ, Truhlar DG (2009) Acc Chem Res 42:493CrossRefGoogle Scholar
  45. 45.
    Eckert F, Diedenhofen M, Klamt A (2010) Mol Phys 108:229CrossRefGoogle Scholar
  46. 46.
    Liptak MD, Shields GC (2001) J Am Chem Soc 123:7314CrossRefGoogle Scholar
  47. 47.
    Toth AM, Liptak MD, Phillips DL, Shields GC (2001) J Chem Phys 114:4595CrossRefGoogle Scholar
  48. 48.
    Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) J Am Chem Soc 124:6421CrossRefGoogle Scholar
  49. 49.
    As of mid-2009, the latest “full” version (as distinct from more frequent revisions) of the Gaussian suite of programs was Gaussian 09. Gaussian is available for several operating systems; see Gaussian, Inc., http://www.gaussian.com, 340 Quinnipiac St., Bldg. 40, Wallingford, CT 06492, USA
  50. 50.
    (a) Feller D, Peterson KA (2007) J Chem Phys 126:114105. (b) Friesner RA, Knoll EH (2006) J Chem Phys 125:124107Google Scholar
  51. 51.
    http://webbook.nist.gov/chemistry/ quoting (a) Caldwell G, Renneboog R, Kebarle P (1989) Can J Chem 67:661. (b) Fujio M, McIver RT Jr, Taft RW (1981) J Am Chem Soc 103:4017. (c) Cumming JB, Kebarle P (1978) Can J Chem 56:1Google Scholar
  52. 52.
    Hamad S, Lago S, Mejias JA (2002) J Phys Chem A 106:9104CrossRefGoogle Scholar
  53. 53.
    Topol IA, Tawa GJ, Burt SK, Rashin AA (1999) J Chem Phys 111:10998CrossRefGoogle Scholar
  54. 54.
    Okur A, Simmerling C (2006) Annual reports in computational chemistry 2:97CrossRefGoogle Scholar
  55. 55.
    Pople JA (1970) Acc Chem Res 3:217CrossRefGoogle Scholar
  56. 56.
    Getty SJ, Davidson ER, Borden WT (1992) J Am Chem Soc 114:2085CrossRefGoogle Scholar
  57. 57.
    See Borden WT, referring to DFT in general, quoted in Bachrach SM (2007) Computational organic chemistry. Wiley-Interscience, Hoboken, NJ, p 193Google Scholar
  58. 58.
    Hrovat DA, Fang S, Borden WT (1997) J Am Chem Soc 119:5253, and references thereinGoogle Scholar
  59. 59.
    Berson JA, Pedersen LD, Carpenter BK (1976) J Am Chem Soc 98:122CrossRefGoogle Scholar
  60. 60.
    Crawford RJ, Mishra A (1965) J Am Chem Soc 87:3768CrossRefGoogle Scholar
  61. 61.
    Doubleday C Jr (1993) J Am Chem Soc 115:11968CrossRefGoogle Scholar
  62. 62.
    Polanyi JC, Zewail AH (1995) Acc Chem Res 28:119CrossRefGoogle Scholar
  63. 63.
    Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, UK, Appendix DGoogle Scholar
  64. 64.
    Kleier DA, Halgren TA, Hall JH Jr, Lipscomb WN (1974) J Chem Phys 61:3905, and references thereinGoogle Scholar
  65. 65.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar
  66. 66.
    (a) Karlstrom G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222. (b) Anderssson K, Malmqvist P-Å, Roos BO (1992) J Chem Phys 96:1218Google Scholar
  67. 67.
    (a) Reyes RB, Carpenter BK (2000) J Am Chem Soc 122:10163, 10165, 10167. (b) Bally T, Borden WT (1999). In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 13. Wiley, New York, p 36, footnoteGoogle Scholar
  68. 68.
    (a) Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255. (b) Treptow RS (1995) The enthalpy difference is not strictly an exact measure of bond strength. J Chem Educ 72:497Google Scholar
  69. 69.
    Sirjean B, Glaude PA, Ruiz-Lopez MF, Fournet R (2006) The activation enthalpy for the opening of cyclopentane, which should be close to the bond enthalpy assuming little enthalpy barrier to reclosing, has been estimated to be 344.8 kJ mol1 (82.4 kcal mol1). J Phys Chem A 110:12693Google Scholar
  70. 70.
    Alkorta I, Elguero J (2006) Chem Phys Lett 425:221CrossRefGoogle Scholar
  71. 71.
    Wang Y, Poirier RA (1998) Can J Chem 76:477CrossRefGoogle Scholar
  72. 72.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York, p 22Google Scholar
  73. 73.
    Lewars E (2005) J Phys Chem A 109:9827CrossRefGoogle Scholar
  74. 74.
    Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, Pittsburgh, PA, pp 228–236Google Scholar
  75. 75.
    Kazaryan A, Filatov M (2009) J Phys Chem A 113:11630, and references thereinCrossRefGoogle Scholar
  76. 76.
    (a) Gräfenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360. (b) Cremer D, Filatov M, Polo V, Kraka E, Shaik S (2002) Int J Mol Sci 3:604. (c) Cremer D (2001) Mol Phys 99:1899Google Scholar
  77. 77.
    Bally T, Borden WT (1999). In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 13. Wiley, New York, Chapter 1Google Scholar
  78. 78.
    For a polemic against the common but convenient practice of referring to relativistic mass versus rest mass see: Okun L (1989) Phys Today June 1989:30. Relativistic effects like mass increase and time decrease (time dilation) at a velocity v are given by what we may call the “Einstein factor”, √(1-v 2/c 2), where c is the velocity of light. The inner electrons of a heavy atom can move at about 0.3c, so here the mass increase is 1/√(1-v 2/c 2) = 1/√(1-0.32) = 1/0.95 = 1.05 or 5 percent. Small but significantGoogle Scholar
  79. 79.
    Jacoby M (1998) Chemical and Engineering News 23 March, p 48Google Scholar
  80. 80.
    Pyykkö P (1988) Chem Rev 88:563CrossRefGoogle Scholar
  81. 81.
    Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov SF (1996). In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH, New YorkGoogle Scholar
  82. 82.
    Cundari TR, Benson MT, Lutz ML, Sommerer SO (1996) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH, New YorkGoogle Scholar
  83. 83.
    Persina VG (1996) Chem Rev 96:1977CrossRefGoogle Scholar
  84. 84.
    Almlöf J, Gropen O (1996). In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH, New YorkGoogle Scholar
  85. 85.
    Balasubramanian K (1997) Relativistic effects in chemistry. Part A, theory and techniques. Part B, applications. Wiley, New YorkGoogle Scholar
  86. 86.
    Wilson S (1998) J Am Chem Soc 120:2492CrossRefGoogle Scholar
  87. 87.
    Pisani L, Clementi E (1994) J Comp Chem 15:466CrossRefGoogle Scholar
  88. 88.
    For a synopsis of the history behind the relativistic equations of Schrödinger and Dirac see Weinberg S (1995) The quantum theory of fields, vol I. Cambridge University Press, Cambridge, UK, Chapter 1, and references therein. This account does not deal specifically with the Dirac–Fock equationGoogle Scholar
  89. 89.
    Malli GL, Siegert M, Turner DP (2008) Int J Quantum Chem 108:2299CrossRefGoogle Scholar
  90. 90.
    Bischoff FA, Klopper W (2010) J Chem Phys 132:094108CrossRefGoogle Scholar
  91. 91.
    Karni M, Apeloig Y, Knapp J, Schleyer PvR (2001) Chemistry of organic silicon compounds 3:1 (Patai series Rappaport Z (ed) The chemistry of functional groups. Wiley, New York)Google Scholar
  92. 92.
    Schleyer PvR, Kaupp M, Hampel F, Bremer M, Mislow K (1992) J Am Chem Soc 114:6791CrossRefGoogle Scholar
  93. 93.
    Seth M, Faegri K, Schwerdfeger P (1998) Angew Chem Int Ed 37:2493CrossRefGoogle Scholar
  94. 94.
    Misra A, Marshall P (1998) J Phys Chem 102:9056CrossRefGoogle Scholar
  95. 95.
    Liao M-S, Zhang Q-E (1998) J Phys Chem A 102:10647CrossRefGoogle Scholar
  96. 96.
    https://bse.pnl.gov/bse/portal Basis Set Exchange: A Community Database for Computational Sciences. See (a) Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045. (b) Feller D (1996) J Comp Chem 17:1571
  97. 97.
    Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, UK, pp 179–180Google Scholar
  98. 98.
    Cotton FA, Wilkinson G, Gaus PL (1995) Basic inorganic chemistry, 3rd edn. Wiley, New York, p 628Google Scholar
  99. 99.
    Cotton FA, Wilkinson G, Gaus PL (1995) Basic inorganic chemistry, 3rd edn. Wiley, New York, Chapter 23Google Scholar
  100. 100.
    Hoffmann R (1982) Angew Chem Int Ed 21:711Google Scholar
  101. 101.
    Cotton FA, Wilkinson G, Gaus PL (1995) Basic inorganic chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  102. 102.
    Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New YorkGoogle Scholar
  103. 103.
    Dagani R (2001) Chemical and Engineering News 3 December, p 37Google Scholar
  104. 104.
    Laszlo P, Hoffmann R (2000) Angew Chem Int Ed 39:123CrossRefGoogle Scholar
  105. 105.
    Comba P, Hambley TW, Martin B (2009) Molecular modelling of inorganic compounds, 3rd edn. Wiley, WeinheimCrossRefGoogle Scholar
  106. 106.
    Ricca A, Bauschlicher CW (1995) Theor Chim Acta 92:123Google Scholar
  107. 107.
    Harvey JN (2009) Abstracts of Papers, 237th ACS National meeting, Salt Lake City, UT, 22–26 March 2009Google Scholar
  108. 108.
    Frenking G (1997) J Chem Soc Dalton Trans 1653Google Scholar
  109. 109.
    Zhao Y, Truhlar DG (2007) Acc Chem Res 41:157CrossRefGoogle Scholar
  110. 110.
    Tekarli S, Drummond L, Williams TG, Cundari TR, Wilson AK (2009) J Phys Chem A 113:8607CrossRefGoogle Scholar
  111. 111.
    E.g. and references therein: (a) Cankurtaran BO, Gale JD, Ford MJ (2008) J Phys Condensed Matter 20:294208. (b) Longo RC, Gallego LJ (2006) Phys Rev B 74:193409Google Scholar
  112. 112.
    (a) Hoffmann R (1963) J Chem Phys 39:1397. (b) Hoffmann R (1964) J Chem Phys 40:2474. (c) Hoffmann R (1964) J Chem Phys 40:2480. (d) Hoffmann R (1964) J Chem Phys 40:2745. (e) Hoffmann R (1966) Tetrahedron 22:521. (f) Hoffmann R (1966) Tetrahedron 22:539. (g) Hay PJ, Thibeault JC, Hoffmann R (1975) J Am Chem Soc 97:4884Google Scholar
  113. 113.
    Genin HS, Lawler KA, Hoffmann R, Hermann WA, Fischer RW, Scherer W (1995) J Am Chem Soc 117:3244CrossRefGoogle Scholar
  114. 114.
    Proserpio DM, Hoffmann R, Dismukes GC (1992) J Am Chem Soc 114:4374CrossRefGoogle Scholar
  115. 115.
    Liu Q, Hoffmann R (1995) J Am Chem Soc 117:10108Google Scholar
  116. 116.
    Alemany P, Hoffmann R (1993) J Am Chem Soc 115:8290CrossRefGoogle Scholar
  117. 117.
    Buda N, Flores A, Cundari TR (2005) J Coord Chem 58:575CrossRefGoogle Scholar
  118. 118.
    Cooney KD, Cundari TR, Hoffman NW, Pittard KA, Temple MD, Zhao Y (2003) J Am Chem Soc 125:4318CrossRefGoogle Scholar
  119. 119.
    Zakharian TY, Coon SR (2001) Computers and Chemistry 25:135CrossRefGoogle Scholar
  120. 120.
    Goh S-K, Marynick DS (2001) J Comp Chem 22:1881CrossRefGoogle Scholar
  121. 121.
    Bosque R, Maseras F (2000) J Comp Chem 21:562CrossRefGoogle Scholar
  122. 122.
    McNamara JP, Sundararajan M, Hillier IH (2005) J Mol Graphics Modell 24:128CrossRefGoogle Scholar
  123. Added in press:Google Scholar
  124. 123.
    Explicit and implicit solvation, benzylic organolithiums. Deora N, Carlier PR, J Org Chem, (2010), 75:1061Google Scholar
  125. 124.
    Molecules on a solvent surface (interface), in solution versus “on” solution. Thomas LL, Tirado-Rives J, Jorgenson WL, J Am Chem Soc, (2010), 132:3097Google Scholar
  126. 125.
    (a) pKa prediction: Methodology based on comparing calculated deprotonation energies with experiment for a training set of 34 molecules. Zhang S, Baker J, Pulay P, J Phys Chem A, (2010), 114:425. (b) pKa prediction: Application of (a) to organic acids. Zhang S, Baker J, Pulay P, J Phys Chem A, (2010), 114:432Google Scholar
  127. 126.
    Book: Solomon EI, Scott RA, King RB (2009) Computational inorganic and bioinorganic chemistry. Wiley, Chichester. Review of book: Cundari TR, J Am Chem Soc, (2010), 132:7557Google Scholar
  128. 127.
    Detailed discussion of electronic structures of the transition elements. Schwarz WHE, J Chem Educ, (2010), 87:444Google Scholar
  129. 128.
    Review of computational organometallic and transition metal chemistry. Lin Z, Acc Chem Res, (2010), 43:602Google Scholar
  130. 129.
    Quantum simulation of the Dirac equation using a trapped ion throws light on some peculiar effects. Gerritsma R, Kirchmair G, Zähringer F, Solano E, Blatt R, Roos CF, Nature, (2010), 463:68Google Scholar
  131. 130.
    (a) Calculations on actinides, handling correlation, relativity, solvation, spinorbit coupling; various functionals. Schreckenbach G, Shamov GA, Acc Chem Res, (2010), 43:19. (b) Actinides and relativistic core potentials (pseudopotentials). Odoh SO, Schreckenbach G, J Phys Chem A, (2010), 114:1957Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Dept. ChemistryTrent UniversityPeterboroughCanada

Personalised recommendations