Transient Charge Density Maps from Femtosecond X-Ray Diffraction

  • Thomas Elsaesser
  • Michael Woerner


We review recent progress in femtosecond x-ray diffraction for mapping structural dynamics on atomic length and time scales. The chapter combines an introduction to the experimental techniques based on laser-driven x-ray sources with a discussion of recent prototype results allowing for the determination of transient charge density maps in molecular materials.


Ammonium Sulfate Pump Pulse Probe Pulse Reciprocal Lattice Vector Diamond Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge the important contributions of our coworkers Z. Ansari and M. Zamponi to the results reported here. This work has been supported in part by the Deutsche Forschungsgemeinschaft through the Priority Program 1134.


  1. 1.
    Warren BE (1969) X-ray diffraction. Dover, New YorkGoogle Scholar
  2. 2.
    Als-Nielsen J, McMorrow D (2001) Elements of modern x-ray physics. Wiley, SussexGoogle Scholar
  3. 3.
    Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Parkin A, Seaton CC, Blagden N, Wilson CC (2007) Designing hydrogen bonds with temperature-dependent proton disorder: the effect of crystal environment. Cryst Growth Des 7:531–534CrossRefGoogle Scholar
  5. 5.
    Neutze R, Wouts R, Techert S, Davidsson J, Kocsis M, Kirrander A, Schotte F, Wulff M (2001) Visualizing photochemical dynamics in solution through picosecond x-ray scattering. Phys Rev Lett 87:195508-1–195508-4CrossRefGoogle Scholar
  6. 6.
    Collet E, Lemee-Cailleau MH, Buron Le Comte M, Cailleau H, Wulff M, Luty T, Koshihara SY, Meyer M, Toupet L, Rabiller P, Techert S (2003) Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 300:612–615CrossRefGoogle Scholar
  7. 7.
    Coppens P, Vorontsov II, Graber T, Gembicky M, Kovalevsky AY (2005) The structure of short-lived excited states of molecular complexes by time-resolved x-ray diffraction. Acta Crystallogr A 61:162–172CrossRefGoogle Scholar
  8. 8.
    Lorenc M, Hebert J, Moisan N, Trzop E, Servol M, Buron-Le Cointe M, Cailleau H, Boillot ML, Pontecorvo E, Wulff M, Koshihara S, Collet E (2009) Successive dynamical steps of photoinduced switching of a molecular Fe(III) spin-crossover material by time-resolved x-ray diffraction. Phys Rev Lett 103:028301-1–028301-4CrossRefGoogle Scholar
  9. 9.
    For a recent overview: Corkum P, de Silvestri S, Nelson K, Riedle E, Schoenlein R (eds) (2009) Ultrafast phenomena XVI. Springer, BerlinGoogle Scholar
  10. 10.
    Rousse A, Rischel C, Gauthier JC (2001) Colloquium: femtosecond x-ray crystallography. Rev Mod Phys 73:17–31CrossRefGoogle Scholar
  11. 11.
    von Korff Schmising C, Bargheer M, Woerner M, Elsaesser T (2008) Real-time studies of reversible lattice dynamics by femtosecond x-ray diffraction. Z Kristallogr 223:283–291CrossRefGoogle Scholar
  12. 12.
    Rischel C, Rousse A, Uschmann I, Albouy PA, Geindre JP, Audebert P, Gauthier JC, Förster E, Martin JL, Antonetti A (1997) Femtosecond time-resolved x-ray diffraction from laser-heated organic films. Nature 390:490–492CrossRefGoogle Scholar
  13. 13.
    Siders CW, Cavalleri A, Sokolowski-Tinten K, Toth C, Guo T, Kammler M, von Hoegen MH, Wilson KR, von der Linde D, Barty CPJ (1999) Detection of nonthermal melting by ultrafast x-ray diffraction. Science 286:1340–1342CrossRefGoogle Scholar
  14. 14.
    Braun M, von Korff Schmising C, Kiel M, Zhavoronkov N, Dreyer J, Bargheer M, Elsaesser T, Root C, Schrader TE, Gilch P, Zinth W, Woerner M (2007) Ultrafast changes of molecular crystal structure induced by dipole solvation. Phys Rev Lett 98:248301-1–248301-4CrossRefGoogle Scholar
  15. 15.
    Sokolowski-Tinten K, Blome C, Blums J, Cavalleri A, Dietrich C, Tarasevitch A, Uschmann I, Förster E, Kammler M, Horn-von-Hoegen M, von der Linde D (2003) Femtosecond x-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422: 287–289CrossRefGoogle Scholar
  16. 16.
    Bargheer M, Zhavoronkov N, Gritsai Y, Woo JC, Kim DS, Woerner M, Elsaesser T (2004) Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction. Science 306:1771–1773CrossRefGoogle Scholar
  17. 17.
    von Korff Schmising C, Bargheer M, Kiel M, Zhavoronkov N, Woerner M, Elsaesser T, Vrejoiu I, Hesse D, Alexe M (2007) Coupled ultrafast lattice and polarization dynamics in ferroelectric nanolayers. Phys Rev Lett 98:257601-1–257601-4CrossRefGoogle Scholar
  18. 18.
    Johnson SL, Beaud P, Vorobeva E, Milne CJ, Murray ED, Fahy S, Ingold G (2009) Directly observing squeezed phonon states with femtosecond x-ray diffraction. Phys Rev Lett 102:175503-1–175503-4CrossRefGoogle Scholar
  19. 19.
    Lindenberg AM et al (2005) Atomic-scale visualization of inertial dynamics. Science 308: 392–395CrossRefGoogle Scholar
  20. 20.
    Zamponi F, Ansari Z, Woerner M, Elsaesser T (2010) Femtosecond powder diffraction with a laser-driven hard x-ray source. Opt Express 18:947–961CrossRefGoogle Scholar
  21. 21.
    Brunel F (1987) Not-so-resonant, resonant absorption. Phys Rev Lett 59:52–55CrossRefGoogle Scholar
  22. 22.
    Zamponi F, Ansari Z, von Korff Schmising C, Rothhardt P, Zhavoronkov N, Woerner M, Elsaesser T, Bargheer M, Trobitzsch-Ryll T, Haschke M (2009) Femtosecond hard X-ray plasma sources with a kilohertz repetition rate. Appl Phys A 96:51–58CrossRefGoogle Scholar
  23. 23.
    Zhavoronkov N, Gritsai Y, Bargheer M, Woerner M, Elsaesser T, Zamponi F, Uschmann I, Förster E (2005) Microfocus Cu Kα source for femtosecond x-ray science. Opt Lett 30:1737–1739CrossRefGoogle Scholar
  24. 24.
    Bargheer M, Zhavoronkov N, Bruch N, Legall H, Stiel H, Woerner M, Elsaesser T (2005) Comparison of focusing optics for femtosecond x-ray diffraction. Appl Phys B 80:715–719CrossRefGoogle Scholar
  25. 25.
    Jortner J, Bixon M (eds) (1999) Electron transfer – from isolated molecules to biomolecules. Adv Chem Phys 106Google Scholar
  26. 26.
    Elsaesser T, Bakker HJ (eds) (2002) Ultrafast hydrogen bonding dynamics and proton transfer processes in the condensed phase. Kluwer, DordrechtGoogle Scholar
  27. 27.
    Schlemper EO, Hamilton WC (1966) Neutron-diffraction study of the structures of ferroelectric and paraelectric ammonium sulfate. J Chem Phys 44:4498–4509CrossRefGoogle Scholar
  28. 28.
    Ahmed S, Shamah AM, Kamel R, Badr Y (1987) Structural changes of (NH4)2SO4 crystals. Phys Status Solidi (a) 99:131–140CrossRefGoogle Scholar
  29. 29.
    Ahmed S, Shamah AM, Ibrahim A, Hanna F (1989) X-ray studies of the high temperature phase transition of ammonium sulphate crystals. Phys Status Sol (a) 115:K149–K153CrossRefGoogle Scholar
  30. 30.
    Syamaprasad U, Vallabhan CPG (1981) Observation of a high-temperature phase transition in (NH4)2SO4 from dielectric studies. J Phys C Solid State Phys 14:L865–L868CrossRefGoogle Scholar
  31. 31.
    Desyatnichenko AV, Shamshin AP, Matyushkin EV (2004) Dielectric dispersion in crystal (NH4)2SO4. Ferroelectrics 307:213–219CrossRefGoogle Scholar
  32. 32.
    Shen RH, Chen YC, Shern CS, Fukami T (2009) Conductivity and dielectric relaxation phenomena in (NH4)2SO4 single crystal. Solid State Ion 180:356–361CrossRefGoogle Scholar
  33. 33.
    Kim J-L, Lee KS (1996) The origin of the nonexistence of prototypic paraelastic phase in (NH4)2SO4. J Phys Soc Jap 65:2664–2669CrossRefGoogle Scholar
  34. 34.
    Sobiestianskas R, Banys J, Brilingas A, Grigas J, Pawlowski A, Hilczer B (2007) Dielectric properties of (NH4)3 H(SO4)2 crystals in room- and high-temperature phases. Ferroelectrics 348:75–81CrossRefGoogle Scholar
  35. 35.
    Woerner M, Zamponi F, Ansari, Z, Dreyer j, Freyer B, Prémont-Schwarz M, Elsaesser T (2010) Concerted electron and proton transfer in ionic crystals mapped by femtosecond X-ray powder diffraction. J. Chem. Phys. 133:064509-1-064509-8Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany

Personalised recommendations