Advertisement

A Generic Force Field Based on Quantum Chemical Topology

  • Paul L. A. Popelier
Chapter

Abstract

This paper presents the present status of force fields, their need in nanosecond simulations of systems of current chemical and biological interest, and finally the important steps in charge density research that are paving the way to generic force fields more tightly related to the real physics of chemical intra- and intermolecular interactions. The transferability of force fields is discussed, emphasizing that “fitting” procedures will be progressively replaced by “learning” procedures of how a molecule react to an embedding environment. The various components of interactions between molecules are also discussed.

Keywords

Force Field Water Cluster Multipole Moment Multipole Expansion Natural Population Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for abinitio total-energy calculations - molecular-dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097CrossRefGoogle Scholar
  2. 2.
    Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRefGoogle Scholar
  3. 3.
    Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq 101:219–260CrossRefGoogle Scholar
  4. 4.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  5. 5.
    Brooks BR, Brooks CLI, MacKerell AJ, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRefGoogle Scholar
  6. 6.
    Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85CrossRefGoogle Scholar
  7. 7.
    Jensen F (2007) Introduction of computational chemistry, 2nd edn. Wiley, ChichesterGoogle Scholar
  8. 8.
    Mu Y, Kosov DS, Stock G (2003) Conformational dynamics of trialanine in water. 2. Comparison of AMBER, CHARMM, GROMOS, and OPLS force fields to NMR and infrared experiments. J Phys Chem B 107:5064–5073CrossRefGoogle Scholar
  9. 9.
    Roux B, Berneche S (2002) On the potential functions used in molecular dynamics simulations of ion channels. Biophys J 82:1681–1684CrossRefGoogle Scholar
  10. 10.
    Chang TM, Dang LX (2006) Recent advances in molecular simulations of ion solvation at liquid interfaces. Chem Rev 106:1305–1322CrossRefGoogle Scholar
  11. 11.
    Jungwirth P, Tobias DJ (2002) Ions at the air/water interface. J Phys Chem B 106:6361–6373CrossRefGoogle Scholar
  12. 12.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  13. 13.
    Rafat M, Popelier PLA (2007) Long range behavior of high-rank topological multipole moments. J Comput Chem 28:292–301CrossRefGoogle Scholar
  14. 14.
    Darley MG, Popelier PLA (2008) Role of short-range electrostatics in torsional potentials. J Phys Chem A 112:12954–12965CrossRefGoogle Scholar
  15. 15.
    Jensen F (1999) Introduction to computational chemistry. Wiley, ChichesterGoogle Scholar
  16. 16.
    Ren PY, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107:5933–5947CrossRefGoogle Scholar
  17. 17.
    Stone AJ (2008) Intermolecular potentials. Science 321:787–789CrossRefGoogle Scholar
  18. 18.
    Stone AJ (1981) Distributed multipole analysis, or how to describe a molecular charge-distribution. Chem Phys Lett 83:233–239CrossRefGoogle Scholar
  19. 19.
    Piquemal J-P, Gresh N, Giessner-Prettre C (2003) Improved formulas for the calculation of the electrostatic contribution to the intermolecular interaction energy from multipolar expansion of the electronic distribution. J Phys Chem A 107:10353–10359CrossRefGoogle Scholar
  20. 20.
    Bader RFW, Becker P (1988) Transferability of atomic properties and the theorem of hohenberg and kohn. Chem Phys Lett 148:452–458CrossRefGoogle Scholar
  21. 21.
    Bader RFW (1990) Atoms in molecules: a quantum theory, vol 22, International series of monographs on chemistry. Oxford Science, OxfordGoogle Scholar
  22. 22.
    Popelier PLA, Aicken FM (2003) Atomic properties of amino acids: computed atom types as a guide for future force-field design. Chem Phys Chem 4:824–829CrossRefGoogle Scholar
  23. 23.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686CrossRefGoogle Scholar
  24. 24.
    Tsirelson VG, Avilov AS, Lepeshov GG, Kulygin AK, Stahn J, Pietsch U, Spence JCH (2001) Quantitative analysis of the electrostatic potential in rock-salt crystals using accurate electron diffraction data. J Phys Chem B 105:5068–5074CrossRefGoogle Scholar
  25. 25.
    Balanarayan P, Gadre SR (2003) Topography of molecular scalar fields. I. Algorithm and Poincare-Hopf relation. J Chem Phys 119:5037–5043CrossRefGoogle Scholar
  26. 26.
    Blanco MA, Martín Pendás A, Francisco E (2005) Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput 1:1096–1109CrossRefGoogle Scholar
  27. 27.
    Popelier PLA, Bremond EAG (2009) Geometrically faithful homeomorphisms between the electron density and the bare nuclear potential. Int J Quantum Chem 109:2542–2553CrossRefGoogle Scholar
  28. 28.
    Freitag MA, Gordon MS, Jensen JH, Stevens WJ (2000) Evaluation of charge penetration between distributed multipolar expansions. J Chem Phys 112:7300–7306CrossRefGoogle Scholar
  29. 29.
    Stone AJ (1996) The theory of intermolecular forces. Clarendon, OxfordGoogle Scholar
  30. 30.
    Rafat M, Popelier PLA (2007) Topological atom–atom partitioning of molecular exchange energy and its multipolar convergence. In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim, pp 121–140Google Scholar
  31. 31.
    Popelier PLA, Please confirm the inserted publisher location in Ref. [31]. ~Stone AJ (1994) Formulas for the 1st and 2nd derivatives of anisotropic potentials with respect to geometrical parameters. Mol Phys 82:411–425CrossRefGoogle Scholar
  32. 32.
    Popelier PLA, Stone AJ, Wales DJ (1994) Topography of potential-energy surfaces for van-der-waals complexes. Faraday Discuss 97:243–264CrossRefGoogle Scholar
  33. 33.
    in het Panhuis M, Popelier PLA, Munn RW, Angyan JG (2001) Distributed polarizability of the water dimer: field-induced charge transfer along the hydrogen bond. J Chem Phys 114:7951–7961CrossRefGoogle Scholar
  34. 34.
    Handley CM, Popelier PLA (2008) The asymptotic behavior of the dipole and quadrupole moment of a single water molecule from gas phase to large clusters: a QCT analysis. Synth React Inorg, Met-Org Nano-Met Chem 38:91–99Google Scholar
  35. 35.
    Popelier PLA (2005) Quantum chemical topology: on bonds and potentials. In: Wales DJ (ed) Structure and bonding. Intermolecular forces and clusters. Springer, Heidelberg, pp 1–56CrossRefGoogle Scholar
  36. 36.
    Popelier PLA, Rafat M, Devereux M, Liem SY, Leslie M (2005) Towards a force field via Quantum Chemical Topology. Lect Ser Comput Comput Sci 4:1251–1255Google Scholar
  37. 37.
    Cooper DL, Stutchbury NCJ (1985) Distributed multipole analysis from charge partitioning by zero-flux surfaces - the structure of HF complexes. Chem Phys Lett 120:167–172CrossRefGoogle Scholar
  38. 38.
    Popelier PLA (1996) Integration of atoms in molecules: a critical examination. Mol Phys 87:1169–1187CrossRefGoogle Scholar
  39. 39.
    Kosov DS, Popelier PLA (2000) Atomic partitioning of molecular electrostatic potentials. J Phys Chem A 104:7339–7345CrossRefGoogle Scholar
  40. 40.
    Kosov DS, Popelier PLA (2000) Convergence of the multipole expansion for electrostatic potentials of finite topological atoms. J Chem Phys 113:3969–3974CrossRefGoogle Scholar
  41. 41.
    Popelier PLA, Rafat M (2003) The electrostatic potential generated by topological atoms: a continuous multipole method leading to larger convergence regions. Chem Phys Lett 376: 148–153CrossRefGoogle Scholar
  42. 42.
    Rafat M, Popelier PLA (2005) Atom-atom partitioning of intramolecular and intermolecular Coulomb energy. J Chem Phys 123:204103–204101,204107CrossRefGoogle Scholar
  43. 43.
    Popelier PLA, Kosov DS (2001) J Chem Phys 114:6539–6547CrossRefGoogle Scholar
  44. 44.
    Popelier PLA, Joubert L, Kosov DS (2001) Convergence of the electrostatic interaction based on topological atoms. J Phys Chem A 105:8254–8261CrossRefGoogle Scholar
  45. 45.
    Joubert L, Popelier PLA (2002) Long range behavior of high-rank topological multipole moments. Mol Phys 100:3357–3365CrossRefGoogle Scholar
  46. 46.
    Rafat M, Popelier PLA (2006) A convergent multipole expansion for 1,3 and 1,4 Coulomb interactions. J Chem Phys 124:144102CrossRefGoogle Scholar
  47. 47.
    Martín Pendás AM, Blanco A, Fransisco E (2004) Two-electron integrations in the quantum theory of atoms in molecules. J Chem Phys 120:4581–4592CrossRefGoogle Scholar
  48. 48.
    Kay KG, Todd HD, Silverstone HJ (1969) J Chem Phys 51:2363–2367CrossRefGoogle Scholar
  49. 49.
    Rafat M, Popelier PLA (2007) J Comput Chem 28:832–838CrossRefGoogle Scholar
  50. 50.
    Bader RFW, Bayles D, Heard GL (2000) Properties of atoms in molecules: transition probabilities. J Chem Phys 112:10095–10105CrossRefGoogle Scholar
  51. 51.
    Mandado M, Grana AM, Mosquera RA (2002) Approximate transferability in alkanols. J Mol Struct-Theochem 584:221–234CrossRefGoogle Scholar
  52. 52.
    Matta CF (2001) Theoretical reconstruction of the electron density of large molecules from fragments determined as proper open quantum systems: the properties of the oripavine PEO, enkephalins, and morphine. J Phys Chem A 105:11088–11101CrossRefGoogle Scholar
  53. 53.
    Bohórquez HJ, Obregón M, Cárdenas C, Llanos E, Suárez C, Villaveces JL, Patarroyo ME (2003) Electronic energy and multipolar moments characterize amino acid side chains into chemically related groups. J Phys Chem A 107:10090–10097CrossRefGoogle Scholar
  54. 54.
    Dittrich B, Scheins S, Paulmann C, Luger P (2003) Transferability of atomic volumes and charges in the peptide bond region in the solid state. J Phys Chem A 107:7471–7474CrossRefGoogle Scholar
  55. 55.
    Alcoba DR, Ona O, Torre A, Lain L, Bochicchio RC (2008) Determination of energies and electronic densities of functional groups according to partitionings in the physical space. J Phys Chem A 112:10023–10028CrossRefGoogle Scholar
  56. 56.
    Grabowsky S, Kalinowski R, Weber M, Foerster D, Carsten P, Luger P (2009) Transferability and reproducibility in electron-density studies - bond-topological and atomic properties of tripeptides of the type L-alanyl-X-L-alanine. Acta Crystallogr B 65:488–501CrossRefGoogle Scholar
  57. 57.
    Koritsanszky T, Volkov A, Coppens P (2002) Aspherical-atom scattering factors from molecular wave functions. 1. Transferability and conformation dependence of atomic electron densities of peptides within the multipole formalism. Acta Crystallogr A 58:464–472CrossRefGoogle Scholar
  58. 58.
    Hansen NK, Coppens P (1978) Electron population analysis of accurate diffraction data. 6. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A 34:909–921CrossRefGoogle Scholar
  59. 59.
    Popelier PLA, Aicken FM (2003) Atomic properties of selected biomolecules: quantum topological atom types of carbon occurring in natural amino acids and derived molecules. J Am Chem Soc 125:1284–1292CrossRefGoogle Scholar
  60. 60.
    Popelier PLA, Aicken FM (2003) Atomic properties of selected biomolecules: quantum topological atom types of hydrogen, oxygen, nitrogen and sulfur occurring in natural amino acids and their derivatives. Chem Eur J 9:1207–1216CrossRefGoogle Scholar
  61. 61.
    Popelier PLA, Devereux M, Rafat M (2004) The quantum topological electrostatic potential as a probe for functional group transferability. Acta Crystallogr A 60:427–433CrossRefGoogle Scholar
  62. 62.
    Rafat M, Shaik M, Popelier PLA (2006) Transferability of quantum topological atoms in terms of electrostatic interaction energy. J Phys Chem A 110:13578–13583CrossRefGoogle Scholar
  63. 63.
    Joubert L, Popelier PLA (2002) The prediction of energies and geometries of hydrogen bonded DNA base-pairs via a topological electrostatic potential. Phys Chem Chem Phys 4:4353–4359CrossRefGoogle Scholar
  64. 64.
    Shaik MS, Devereux M, Popelier PLA (2008) The importance of multipole moments when describing water and hydrated amino acid cluster geometry. Mol Phys 106:1495–1510CrossRefGoogle Scholar
  65. 65.
    Devereux M, Popelier PLA (2007) The effects of hydrogen-bonding environment on the polarization and electronic properties of water molecules. J Phys Chem A 111:1536–1544CrossRefGoogle Scholar
  66. 66.
    Liem SY, Popelier PLA (2003) High-rank quantum topological electrostatic potential: molecular dynamics simulation of liquid hydrogen fluoride. J Chem Phys 119:4560–4566CrossRefGoogle Scholar
  67. 67.
    Leslie M (2008) DL_MULTI - a molecular dynamics program to use distributed multipole electrostatic models to simulate the dynamics of organic crystals. Mol Phys 106:1567–1578CrossRefGoogle Scholar
  68. 68.
    Smith W, Leslie M, Forester TR (2003) DLPOLY, a computer program. CCLRC, Daresbury Lab, Daresbury, WarringtonGoogle Scholar
  69. 69.
    Liem SY, Popelier PLA, Leslie M (2004) Simulation of liquid water using a high-rank quantum topological electrostatic potential. Int J Quantum Chem 99:685–694CrossRefGoogle Scholar
  70. 70.
    Liem SY, Popelier PLA (2008) Properties and 3D structure of liquid water: a perspective from a high-rank multipolar electrostatic potential. J Chem Theory Comput 4:353–365CrossRefGoogle Scholar
  71. 71.
    Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 112:8910–8922CrossRefGoogle Scholar
  72. 72.
    Angyan JG, Loos M, Mayer I (1994) Covalent bond orders and atomic valence indexes in the topological theory of atoms in molecules. J Phys Chem 98:5244–5248CrossRefGoogle Scholar
  73. 73.
    in het Panhuis M, Munn RW, Popelier PLA, Coleman JN, Foley B, Blau WJ (2002) Distributed response analysis of conductive behavior in single molecules. Proc Natl Acad Sci U S A 99:6514–6517CrossRefGoogle Scholar
  74. 74.
    Houlding S, Liem SY, Popelier PLA (2007) A polarizable high-rank quantum topological electrostatic potential developed using neural networks: molecular dynamics simulations on the hydrogen fluoride dimer. Int J Quantum Chem 107:2817–2827CrossRefGoogle Scholar
  75. 75.
    Darley MG, Handley CM, Popelier PLA (2008) Beyond point charges: dynamic polarization from neural net predicted multipole moments. J Chem Theory Comput 4:1435–1448CrossRefGoogle Scholar
  76. 76.
    Price SL (2008) Computational prediction of organic crystal structures and polymorphism. Int Rev Phy Chem 27:541–568CrossRefGoogle Scholar
  77. 77.
    Handley CM, Popelier PLA (2009) Dynamically polarizable water potential based on multipole moments trained by machine learning. J Chem Theory Comput 5:1474–1489CrossRefGoogle Scholar
  78. 78.
    Handley CM, Hawe GI, Kell DB, Popelier PLA (2009) Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning. Phys Chem Chem Phys 11:6365–6376CrossRefGoogle Scholar
  79. 79.
    Cressie N (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  80. 80.
    Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press, CambridgeGoogle Scholar
  81. 81.
    Volkov A, Koritsanszky T, Coppens P (2004) Combination of the exact potential and multipole methods (EP/MM) for evaluation of intermolecular electrostatic interaction energies with pseudoatom representation of molecular electron densities. Chem Phys Lett 391:170–175CrossRefGoogle Scholar
  82. 82.
    Walker PD, Mezey PG (1993) mmolecular electron-density lego approach to molecule building. J Am Chem Soc 115:12423–12430CrossRefGoogle Scholar
  83. 83.
    Dominiak PM, Volkov A, Li X, Messerschmidt M, Coppens P (2007) A theoretical databank of transferable aspherical atoms and its application to electrostatic interaction energy calculations of macromolecules. J Chem Theory Comput 3:232–247CrossRefGoogle Scholar
  84. 84.
    Zarychta B, Pichon-Pesme V, Guillot B, Lecomte C, Jelsch C (2007) On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. Acta Crystallogr A 63:108–125CrossRefGoogle Scholar
  85. 85.
    Huebschle CB, Luger P, Dittrich B (2007) Automation of invariom and of experimental charge density modelling of organic molecules with the preprocessor program InvariomTool. J Appl Crystallogr 40:623–627CrossRefGoogle Scholar
  86. 86.
    Stewart RF (1976) Electron population analysis with rigid pseudoatoms. Acta Crystallogr A 32:565–574CrossRefGoogle Scholar
  87. 87.
    Volkov A, Li X, Koritsanszky T, Coppens P (2004) Ab Initio quality electrostatic atomic and molecular properties including intermolecular energies from a transferable theoretical pseudoatom databank. J Phys Chem 108:4283–4300Google Scholar
  88. 88.
    Volkov A, Gatti C, Abramov Y, Coppens P (2000) Evaluation of net atomic charges and atomic and molecular electrostatic moments through topological analysis of the experimental charge density. Acta Crystallogr A 56:252–258CrossRefGoogle Scholar
  89. 89.
    Dittrich B, Huebschle CB, Luger P, Spackman MA (2006) Introduction and validation of an invariom database for amino-acid, peptide and protein molecules. Acta Crystallogr D 62:1325–1335CrossRefGoogle Scholar
  90. 90.
    Dittrich B, Koritsanszky T, Luger P (2004) A simple approach to non spherical electron densities by using invarioms. Angew Chem Int Ed 43:2718–2721CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Manchester Interdisciplinary Biocentre (MIB)ManchesterUK
  2. 2.School of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations