Spintronics pp 15-43 | Cite as

New Heusler Compounds and Their Properties

  • Benjamin Balke
  • Gerhard H. Fecher
  • Claudia Felser


Spintronics is a multidisciplinary field and a new research area. New materials must be found for satisfying the different types of requirement. The search for stable half-metallic ferromagnets and ferromagnetic semiconductors with Curie temperatures higher than room temperature is still a challenge for solid state scientists. A general understanding of how structures are related to properties is a necessary prerequisite for material design. Computational simulations are an important tool for a rational design of new materials. The new developments in this new field are reported from the point of view of material scientists.


Valence Electron Spin Polarization Seebeck Coefficient Heusler Alloy Tunnel Magneto Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the Deutsche Forschungsgemeinschaft (project P 1 in DfG research unit FOR 559). Additional financial support by the DAAD (D06/33952), CAPES PROBRAL (167/04), and Stiftung Innovation Rheinland-Pfalz is gratefully acknowledged. The authors thank Y. Hwu (Taipei, Taiwan), K. Kobayashi (Hyogo, Japan), H.-J. Lin (Hsinchu, Taiwan), J. Morais, M.C.M. Alves, F. Bernardi, (Porto Alegre, Brazil), R. Seshadri (Santa Barbara, USA) as well as V. Alijani, J. Barth, L. Basit, S. Berinskat, C.G.F. Blum, F. Caspar, T. Gasi, T. Graf, V. Jung, H.C. Kandpal, V. Ksenofontov, S. Ouardi, W. Tremel, J. Winterlik, and S. Wurmehl and all the student assistants during the last six years for their help with theory and experiments, and for fruitful discussions. Assistance by the staff of the synchrotron facilities BESSY (Berlin, Germany), LNLS (Campinas, Brazil), NSRRC (Hsinchu, Taiwan) and SPRING-8 (Hyogo, Japan) is gratefully acknowledged.


  1. 1.
    Prinz GA (1998) Science 282:1660 CrossRefGoogle Scholar
  2. 2.
    de Groot RA, Müller FM, Engen PGv, Buschow KHJ (1983) Phys Rev Lett 50:2024 CrossRefGoogle Scholar
  3. 3.
    Coey JMD, Venkatesan M, Bari MA (eds) (2002) Half-metallic ferromagnets. Lecture notes in physics, vol 595. Springer, Heidelberg Google Scholar
  4. 4.
    Youn SJ, Min BI (1995) Phys Rev B 51:10436 CrossRefGoogle Scholar
  5. 5.
    Ristoiu D, Nozieres JP, Borca CN, Borca B, Dowben PA (2000) Appl Phys Lett 76:2349 CrossRefGoogle Scholar
  6. 6.
    Ristoiu D, Nozieres JP, Borca CN, Komesu T, Jeong HK, Dowben PA (2000) Europhys Lett 49:624 CrossRefGoogle Scholar
  7. 7.
    Zhu W, Sinkovic B, Vescovo E, Tanaka C, Moodera JS (2001) Phys Rev B 64:R060403 CrossRefGoogle Scholar
  8. 8.
    Kübler J, Williams AR, Sommers CB (1983) Phys Rev B 28:1745 CrossRefGoogle Scholar
  9. 9.
    Webster PJ, Ziebeck KRA (1973) J Phys Chem Solids 34:1647 CrossRefGoogle Scholar
  10. 10.
    Heusler F (1903) Verh Dtsch Phys Ges 5:219 Google Scholar
  11. 11.
    Block T, Felser C, Jakob G, Ensling J, Mühling B, Gütlich P, Beaumont V, Studer F, Cava RJ (2003) J Solid State Chem 176:646 CrossRefGoogle Scholar
  12. 12.
    Block T, Wurmehl S, Felser C, Windeln J (2006) Appl Phys Lett 88:202504 CrossRefGoogle Scholar
  13. 13.
    Inomata K, Okamura S, Goto R, Yezuka N (2003) Jpn J Appl Phys 42:L419 CrossRefGoogle Scholar
  14. 14.
    Kelekar R, Clemens BM (2004) J Appl Phys 96:540 CrossRefGoogle Scholar
  15. 15.
    Hirohata A, Kikuchi M, Tezuka N, Inomata K, Claydon JS, Xu YB (2005) J Appl Phys 97:10C308 CrossRefGoogle Scholar
  16. 16.
    Hirohata A, Kurebayashi H, Okamura S, Kikuchi M, Masaki T, Nozaki T, Tezuka N, Inomata K (2005) J Appl Phys 97:103714 CrossRefGoogle Scholar
  17. 17.
    Jakob G, Casper F, Beaumont V, Falka S, Auth N, Elmers HJ, Felser C, Adrian H (2005) J Magn Magn Mater 290–291:1104 CrossRefGoogle Scholar
  18. 18.
    Inomata K, Tezuka N, Okamura S, Kurebayashi H, Hirohata A (2004) J Appl Phys 95:7234 CrossRefGoogle Scholar
  19. 19.
    Marukame T, Kasahara T, Matsuda KI, Uemura T, Yamamoto M (2005) Jpn J Appl Phys 44:L521 CrossRefGoogle Scholar
  20. 20.
    Auth N, Jakob G, Block T, Felser C (2003) Phys Rev B 62:024403 CrossRefGoogle Scholar
  21. 21.
    Conca A, Falk S, Jakob G, Jourdan M, Adrian H (2005) J Magn Magn Mater 290–291:1127 CrossRefGoogle Scholar
  22. 22.
    Clifford E, Venkatesan M, Gunning R, Coey JMD (2004) Solid State Commun 131:61 CrossRefGoogle Scholar
  23. 23.
    Rodrìgues-Carval J (1993) Physica B 55:192 Google Scholar
  24. 24.
    Ferreira FF, Granado E, Carvalho W Jr., Kycia SW, Bruno D, Droppa R Jr. (2006) J Synchrotron Radiat 13:46 CrossRefGoogle Scholar
  25. 25.
    Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin HJ, Morais J (2005) Phys Rev B 72:184434 CrossRefGoogle Scholar
  26. 26.
    Ouardi S, Gloskovskii A, Balke B, Jenkins CA, Barth J, Fecher GH, Felser C, Gorgoi M, Mertin M, Schäfers F, Ikenaga E, Yang K, Kobayashi K, Kubota T, Oogane M, Ando Y (2009) J Phys D, Appl Phys 42:084011 CrossRefGoogle Scholar
  27. 27.
    Graf T, Fecher GH, Barth J, Winterlik J, Felser C (2009) J Phys D, Appl Phys 42:084003 CrossRefGoogle Scholar
  28. 28.
    Barth J, Fecher GH, Balke B, Ouardi S, Graf T, Felser C, Shkabko A, Weidenkaff A, Klaer P, Elermers HJ, Yoshikawa H, Ueda S, Kobayashi K (2010) Phys Rev B 81:064404 CrossRefGoogle Scholar
  29. 29.
    Wurmehl S, Alves MCM, Morais J, Ksenofontov V, Teixeira SR, Machado G, Fecher GH, Felser C (2007) J Phys D, Appl Phys 40:1524 CrossRefGoogle Scholar
  30. 30.
    Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin HJ (2006) Appl Phys Lett 88:032503 CrossRefGoogle Scholar
  31. 31.
    Wurmehl S, Morais J, Alves MdCM, Teixeira SR, Fecher GH, Felser C (2006) J Alloys Compd 423:159 CrossRefGoogle Scholar
  32. 32.
    Wurmehl S, Fecher GH, Felser C (2006) Z Naturforsch 61b:749 Google Scholar
  33. 33.
    Wurmehl S, Fecher GH, Kroth K, Kronast F, Dürr HA, Takeda Y, Saitoh Y, Kobayashi K, Lin HJ, Schönhense G, Felser C (2006) J Phys D, Appl Phys 39:803 CrossRefGoogle Scholar
  34. 34.
    Wurmehl S, Fecher GH, Ksenofontov V, Casper F, Stumm U, Felser C, Lin HJ, Hwu Y (2006) J Appl Phys 99:08J103 CrossRefGoogle Scholar
  35. 35.
    Fuji S, Sugimura S, Ishida S, Asano S (1990) J Phys Condens Matter 2:8583 CrossRefGoogle Scholar
  36. 36.
    Brown PJ, Neumann KU, Webster PJ, Ziebeck KRA (2000) J Phys Condens Matter 12:1827 CrossRefGoogle Scholar
  37. 37.
    Ravel B, Raphael MP, Harris VG, Huang Q (2002) Phys Rev B 65:184431 CrossRefGoogle Scholar
  38. 38.
    Geiersbach U, Bergmann A, Westerholt K (2002) J Magn Magn Mater 240:546 CrossRefGoogle Scholar
  39. 39.
    Kämmerer S, Heitmann S, Meyners D, Sudfeld D, Thomas A, Hütten A, Reiss G (2003) J Appl Phys 93:7945 CrossRefGoogle Scholar
  40. 40.
    Singh LJ, Barber ZH, Miyoshi Y, Bugoslavsky Y, Branford WR, Cohen LF (2004) Appl Phys Lett 84:2367 CrossRefGoogle Scholar
  41. 41.
    Wang WH, Przybylski M, Kuch W, Chelaru LI, Wang J, Lu F, Barthel J, Meyerheim HL, Kirschner J (2005) Phys Rev B 71:144416 CrossRefGoogle Scholar
  42. 42.
    Wang WH, Przybylskia M, Kuch W, Chelaru LI, Wang J, Lu YF, Barthel J, Kirschner J (2005) J Magn Magn Mater 286:336 CrossRefGoogle Scholar
  43. 43.
    Schmalhorst J, Kämmerer S, Sacher M, Reiss G, Hütten A, Scholl A (2004) Phys Rev B 70:024426 CrossRefGoogle Scholar
  44. 44.
    Schmalhorst J, Kammerer S, Reiss G, Hütten A (2005) Appl Phys Lett 86:052501 CrossRefGoogle Scholar
  45. 45.
    LeClair P, Swagten HJM, Kohlhepp JT, de Jonge WJM (2000) Appl Phys Lett 76:3783 CrossRefGoogle Scholar
  46. 46.
    Kandpal HC, Fecher GH, Felser C, Schönhense G (2006) Phys Rev B 73:094422 CrossRefGoogle Scholar
  47. 47.
    Balke B, Fecher GH, Kandpal HC, Felser C, Kobayashi K, Ikenaga E, Kim JJ, Ueda S (2006) Phys Rev B 74:104405 CrossRefGoogle Scholar
  48. 48.
    Inomata K, Okamura S, Miyazaki A, Kikuchi M, Tezuka N, Wojcik M, Jedryka E (2006) J Phys D, Appl Phys 39:816 CrossRefGoogle Scholar
  49. 49.
    Oogane M, Sakuraba Y, Nakata J, Kubota H, Ando Y, Sakuma A, Miyazaki T (2006) J Phys D, Appl Phys 39:834 CrossRefGoogle Scholar
  50. 50.
    Ebke D, Schmalhorst J, Liu NN, Thomas A, Reiss G, Hütten A (2006) Appl Phys Lett 89:162506 CrossRefGoogle Scholar
  51. 51.
    Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M, Inomata K (2006) Appl Phys Lett 89:112514 CrossRefGoogle Scholar
  52. 52.
    Tezuka N, Ikeda N, Sugimoto S, Inomata K (2006) Appl Phys Lett 89:252508 CrossRefGoogle Scholar
  53. 53.
    Fecher GH, Felser C (2007) J Phys D, Appl Phys 40:1582 CrossRefGoogle Scholar
  54. 54.
    Kobayashi K, Umetsu RY, Kainuma R, Ishida K, Oyamada T, Fujita A, Fukamichi K (2004) Appl Phys Lett 85:4684 CrossRefGoogle Scholar
  55. 55.
    Shan R, Sukegawa H, Wang WH, Kodzuka M, Furubayashi T, Ohkubo T, Mitani S, Inomata K, Hono K (2009) Phys Rev Lett 102:246601 CrossRefGoogle Scholar
  56. 56.
    Furubayashi T, Kodama K, Nakatani TM, Sukegawa H, Takahashi YK, Inomata K, Hono K (2010) J Appl Phys 107:113917 CrossRefGoogle Scholar
  57. 57.
    Kübler J, Fecher GH, Felser C (2007) Phys Rev B 76:024414 CrossRefGoogle Scholar
  58. 58.
    Galanakis I, Dederichs PH (eds) (2005) Half-metallic alloys. Lecture notes in physics, vol 676. Springer, Berlin Google Scholar
  59. 59.
    Ravel B, Cross JO, Raphael MP, Harris VG, Ramesh R, Saraf V (2002) Appl Phys Lett 81:2812 CrossRefGoogle Scholar
  60. 60.
    Tampo H, Fons P, Yamada A, Kim KK, Shibata H, Matsubara K, Niki S, Yoshikawa H, Kanie H (2005) Appl Phys Lett 87:141904 CrossRefGoogle Scholar
  61. 61.
    Zhu Q, Li L, Masteller MS, Corso GJD (1996) Appl Phys Lett 69:3917 CrossRefGoogle Scholar
  62. 62.
    Chow GM, Sun CJ, Soo EW, Wang JP, Lee HH, Noh DY, Cho TS, Je JH, Hwu YK (2002) Appl Phys Lett 80:1607 CrossRefGoogle Scholar
  63. 63.
    Cross JO, Newville M, Rehr JJ, Sorensen LB, Bouldin CE, Watson G, Gouder T, Lander GH, Bell MI (1998) Phys Rev B 58:11215 CrossRefGoogle Scholar
  64. 64.
    Graf T, Casper F, Winterlik J, Balke B, Fecher GH, Felser C, Anorg Z (2009) Z Anorg Allg Chem 635:976 CrossRefGoogle Scholar
  65. 65.
    Gercsi Z, Rajanikanth A, Takahashi YK, Hono K, Kikuchi M, Tezuka N, Inomata K (2006) Appl Phys Lett 89:082512 CrossRefGoogle Scholar
  66. 66.
    Ishikawa T, Marukame T, Kijima H, Matsuda Ki, Uemura T, Yamamoto M (2006) Appl Phys Lett 89:192505 CrossRefGoogle Scholar
  67. 67.
    Tsunegi S, Sakuraba Y, Oogane M, Takanashi K, Ando Y (2008) Appl Phys Lett 93:112506 CrossRefGoogle Scholar
  68. 68.
    Oogane M, Shinano M, Sakuraba Y, Ando Y (2009) J Appl Phys 105:07C903 CrossRefGoogle Scholar
  69. 69.
    Chioncel L, Sakuraba Y, Arrigoni E, Katsnelson MI, Oogane M, Ando Y, Miyazaki T, Burzo E, Lichtenstein AI (2008) Phys Rev Lett 100:086402 CrossRefGoogle Scholar
  70. 70.
    Ambrose T, Krebs JJ, Prinz GA (2000) Appl Phys Lett 76:3280 CrossRefGoogle Scholar
  71. 71.
    Raphael MP, Ravel B, Willard MA, Cheng SF, Das BN, Stroud RM, Bussmann KM, Claassen JH, Harris VG (2001) Appl Phys Lett 79:4396 CrossRefGoogle Scholar
  72. 72.
    Schneider H, Jakob G, Kallmayer M, Elmers HJ, Cinchetti M, Balke B, Wurmehl S, Felser C, Aeschlimann M, Adrian H (2006) Phys Rev B 74:174426 CrossRefGoogle Scholar
  73. 73.
    Paudel MR, Wolfe CS, Patton HMA, Simonson J, Dubenko I, Ali N, Stadler S (2009) J Appl Phys 105:07E902 CrossRefGoogle Scholar
  74. 74.
    Otto MJ, van Woerden RAM, van der Valk PJ, Wijngaard J, van Bruggen CF, Haas C (1989) J Phys Condens Matter 1:2351 CrossRefGoogle Scholar
  75. 75.
    Schmalhorst J, Ebke D, Weddemann A, Hütten A, Thomas A, Reiss G, Turchanin A, Gölzhäuser A, Balke B, Felser C (2008) J Appl Phys 104:043918 CrossRefGoogle Scholar
  76. 76.
    Inomata K, Ikeda N, Tezuka N, Goto R, Sugimoto S, Wojcik M, Jedryka E (2008) Sci Technol Adv Mater 9:014101 CrossRefGoogle Scholar
  77. 77.
    Blum CGF, Jenkins CA, Barth J, Felser C, Wurmehl S, Friemel G, Hess C, Behr G, Büchner B, Reller A, Riegg S, Ebbinghaus SG, Ellis T, Jacobs PJ, Kohlhepp JT, Swagten HJM (2009) Appl Phys Lett 95:161903 CrossRefGoogle Scholar
  78. 78.
    Matsuda K, Hiroi M, Kawakami M (2005) J Phys Condens Matter 17:5889 CrossRefGoogle Scholar
  79. 79.
    Kusakari Y, Kanomata T, Fukushima K, Nishihara H (2007) J Magn Magn Mater 310:e607 CrossRefGoogle Scholar
  80. 80.
    Picozzi S, Continenza A, Freeman AJ (2002) Phys Rev B 66:094421 CrossRefGoogle Scholar
  81. 81.
    Galanakis I, Dederichs PH, Papanikolaou N (2002) Phys Rev B 66:174429 CrossRefGoogle Scholar
  82. 82.
    Pugacheva M, Jezierski A (1995) J Magn Magn Mater 151:202 CrossRefGoogle Scholar
  83. 83.
    Klaer P, Kallmayer M, Elmers HJ, Basit L, Thöne J, Chadov S, Felser C (2009) J Phys D, Appl Phys 42:084001 CrossRefGoogle Scholar
  84. 84.
    Fecher GH, Kandpal HC, Wurmehl S, Felser C, Schönhense G (2006) J Appl Phys 99:08J106 CrossRefGoogle Scholar
  85. 85.
    Kübler J (2000) Theory of itinerant electron magnetism. Oxford University Press, Oxford Google Scholar
  86. 86.
    Wurmehl S, Kandpal HC, Fecher GH, Felser C (2006) J Phys Condens Matter 18:6171 CrossRefGoogle Scholar
  87. 87.
    Pickett WE (1998) Phys Rev B 57:10613 CrossRefGoogle Scholar
  88. 88.
    Felser C, Fecher GH, Balke B (2007) Angew Chem, Int Ed 46:668 CrossRefGoogle Scholar
  89. 89.
    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E (2008) Nature 455:778 CrossRefGoogle Scholar
  90. 90.
    Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488 CrossRefGoogle Scholar
  91. 91.
    Zutic I, Fabian J, Sarma SD (2004) Rev Mod Phys 76:323 CrossRefGoogle Scholar
  92. 92.
    Chappert C, Fert A, Van Dau FN (2007) Nat Mater 6:813 CrossRefGoogle Scholar
  93. 93.
    Ong NP (2008) Nature 455:741 CrossRefGoogle Scholar
  94. 94.
    Kandpal HC, Felser C, Fecher GH (2007) J Magn Magn Mater 310:1626 CrossRefGoogle Scholar
  95. 95.
    Ouardi S, Balke B, Gloskovskii A, Fecher GH, Felser C, Schönhense G, Ishikawa T, Uemura T, Yamamoto M, Sukegawa H, Wang W, Inomata K, Yamashita Y, Yoshikawa H, Ueda S, Kobayashi K (2009) J Phys D, Appl Phys 42:084010 CrossRefGoogle Scholar
  96. 96.
    Snyder GJ, Toberer ES (2008) Nat Mater 7:107 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Benjamin Balke
    • 1
  • Gerhard H. Fecher
    • 1
    • 2
  • Claudia Felser
    • 1
    • 2
  1. 1.Institut für Anorganische Chemie und Analytische ChemieJohannes Gutenberg – UniversitätMainzGermany
  2. 2.Max-Planck-Institut für Chemische Physik fester StoffeDresdenGermany

Personalised recommendations