Spintronics pp 355-366 | Cite as

Tunnel Magnetoresistance Effect in Tunnel Junctions with Co2MnSi Heusler Alloy Electrode and MgO Barrier

  • Yasuo Ando
  • Sumito Tsunegi
  • Yuya Sakuraba
  • Mikihiko Oogane
  • Hiroshi Naganuma
  • Koki Takanashi


We demonstrated that a large TMR ratio of 753 % has been observed at 2 K in a MTJ using a Co2MnSi Heusler alloy electrode and a crystalline MgO tunnel barrier. At room temperature (RT), we also have observed a large TMR ratio of 217 %, which value at RT is much larger than that of MTJs using an amorphous Al-oxide tunnel barrier. However, the temperature dependence of the TMR ratio was still large. In order to improve the interface, we investigated the TMR effect in Co2MnSi/CoFeB(0–2 nm)/MgO/CoFe MTJs. TMR ratio was enhanced by inserting a thin CoFeB layer at the Co2MnSi/MgO interface. The MTJ with CoFeB thickness of 0.5 nm exhibited the highest TMR ratio. From the conductance–voltage measurements for the fabricated MTJs, we inferred that the highly spin polarized electron created in Co2MnSi can conserve the polarization through the 0.5 nm thick FeB layer.


Heusler Alloy Magnetic Tunnel Junction Tunneling Magnetoresistance Transmission Electron Micrograph Image Coherent Tunneling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank all our collaborators in the DFG research unit FG 559. This work would be the result of efforts of all members. This study was supported by DFG FG 559 (project P12) and the Strategic Japanese–German Cooperative Program on Nanoelectronics by JST as the matching fund. Also, the part of this work was supported by the High-Performance Low-Power Consumption Spin Devices and Storage Systems program under Research and Development for Next-Generation Information Technology, and Grand-in-Aid for Scientific Research for Priority Area Creation and Control of Spin Current by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). This research was partly conducted at the Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University.


  1. 1.
    Galanakis I (2002) J Phys Condens Matter 14:6329 CrossRefGoogle Scholar
  2. 2.
    Picozzi S, Continenza A, Freeman AJ (2002) Phys Rev B 66:094421 CrossRefGoogle Scholar
  3. 3.
    Wurmehl S, Fecher GH, Kroth K, Kronast F, Dürr H, Takeda Y, Saitoh Y, Kobayashi K, Lin HJ, Schönhense G, Felser C (2006) J Phys D, Appl Phys 39:803 CrossRefGoogle Scholar
  4. 4.
    Tanaka CT, Nowak J, Moodera JS (1999) J Appl Phys 86:6239 CrossRefGoogle Scholar
  5. 5.
    Inomata K, Okamura S, Goto R, Tezuka N (2003) Jpn J Appl Phys 42:L419 CrossRefGoogle Scholar
  6. 6.
    Kubota H, Nakata J, Oogane M, Ando Y, Sakuma A, Miyazaki T (2004) Jpn J Appl Phys 43:L984 CrossRefGoogle Scholar
  7. 7.
    Conca A, Falk S, Jakob G, Jourdan M, Adrian H (2004) J Magn Magn Mater 290–291:1127 Google Scholar
  8. 8.
    Kämmerer S, Thomas A, Hütten A, Reiss G (2004) Appl Phys Lett 85:79 CrossRefGoogle Scholar
  9. 9.
    Sakuraba Y, Nakata J, Oogane M, Kubota H, Ando Y, Sakuma A, Miyazaki T (2005) Jpn J Appl Phys 2(44):L1100 CrossRefGoogle Scholar
  10. 10.
    Sakuraba Y, Hattori M, Oogane M, Kubota H, Ando Y, Sakuma A, Telling PKND, van der Laan G, Arenholz E, Hicken RJ, Miyazaki T (2007) J Magn Soc Jpn 31:209 CrossRefGoogle Scholar
  11. 11.
    Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H (2006) Appl Phys Lett 88:192508 CrossRefGoogle Scholar
  12. 12.
    Julliere M (1975) Phys Lett 54A:225 Google Scholar
  13. 13.
    Butler WH, Zhang XG, Schulthess TC, MacLaren JM (2001) Phys Rev B 63:054416 CrossRefGoogle Scholar
  14. 14.
    Mathon J, Umerski A (2001) Phys Rev B 63:220403 CrossRefGoogle Scholar
  15. 15.
    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Nat Mater 3:868 CrossRefGoogle Scholar
  16. 16.
    Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H (2008) Appl Phys Lett 93:082508 CrossRefGoogle Scholar
  17. 17.
    Ishikawa T, Hakamata S, Matsuda K, Umemura T, Yamamoto M (2008) J Appl Phys 103:07919 CrossRefGoogle Scholar
  18. 18.
    Tezuka N, Ikeda N, Sugimoto S, Inomata K (2007) Jpn J Appl Phys 2(46):L454 CrossRefGoogle Scholar
  19. 19.
    Tezuka N, Ikeda N, Mitsuhashi F, Sugimoto S (2009) Appl Phys Lett 94:162504 CrossRefGoogle Scholar
  20. 20.
    Miura Y, Uchida H, Oba Y, Nagao K, Shirai M (2007) J Phys Condens Matter 19:365228 CrossRefGoogle Scholar
  21. 21.
    Tsunegi S, Sakuraba Y, Oogane M, Takanashi K, Ando Y (2008) Appl Phys Lett 93:112506 CrossRefGoogle Scholar
  22. 22.
    Oogane M, Sakuraba Y, Nakata J, Kubota H, Ando Y, Sakuma A, Miyazaki T (2006) J Phys D 39:834 Google Scholar
  23. 23.
    Hayakawa J, Ikeda S, Matsukura F, Takahashi H, Ohno H (2005) Jpn J Appl Phys 44:L587 CrossRefGoogle Scholar
  24. 24.
    Hayakawa J, Ikeda S, Lee YM, Matsumura F, Ohno H (2006) Appl Phys Lett 89:232510 CrossRefGoogle Scholar
  25. 25.
    Telling ND, Keatley PS, der Laan GV, Hicken RJ, Arenholz E, Sakuraba Y, Oogane M, Ando Y, Miyazaki T (2006) Phys Rev B 74:224439 CrossRefGoogle Scholar
  26. 26.
    Matsumoto R, Nishioka S, Mizuguchi M, Shiraishi M, Maehara H, Tsunekawa K, Djayaprawira DD, Watanabe N, Otani Y, Nagahama T, Fukushima A, Kubota H, Yuasa S, Suzuki Y (2007) Solid State Commun 143:574 CrossRefGoogle Scholar
  27. 27.
    Miao G, Chetry KB, Gupta A, Butler WH, Tsunekawa K, Djayaprawira DD, Xiao G (2006) J Appl Phys 99:08T305 CrossRefGoogle Scholar
  28. 28.
    Ando Y, Miyakoshi T, Oogane M, Miyazaki T, Kubota H, Ando K, Yuasa S (2005) Appl Phys Lett 87:142502 CrossRefGoogle Scholar
  29. 29.
    Sakuraba Y, Kubota H, Miyakoshi T, Oogane M, Ando Y, Sakuma A, Miyazaki T (2006) Appl Phys Lett 89:052508 CrossRefGoogle Scholar
  30. 30.
    Zhang S, Levy PM, Marley AC, Parkin SS (1997) Phys Rev Lett 79:3744 CrossRefGoogle Scholar
  31. 31.
    Takada I, Inoue J, Itoh H (2008) J Magn Soc Jpn 32:338 CrossRefGoogle Scholar
  32. 32.
    Sakuma A, Toga Y, Tsuchiura H (2009) J Appl Phys 105:07C910 CrossRefGoogle Scholar
  33. 33.
    Tsunegi S, Sakuraba Y, Oogane M, Naganuma H, Takanashi K, Ando Y (2009) Appl Phys Lett 94:252503 CrossRefGoogle Scholar
  34. 34.
    Sakuraba Y, Hattori M, Oogane M, Kubota H, Ando Y, Sakuma A, Miyazaki T (2007) J Phys D, Appl Phys 40:1221 CrossRefGoogle Scholar
  35. 35.
    Tsunegi S, Sakuraba Y, Oogane M, Takanashi K, Ando Y (2009) J Phys D, Appl Phys 42:195004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yasuo Ando
    • 1
  • Sumito Tsunegi
    • 1
  • Yuya Sakuraba
    • 2
  • Mikihiko Oogane
    • 1
  • Hiroshi Naganuma
    • 1
  • Koki Takanashi
    • 2
  1. 1.Department of Applied Physics, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations