Skip to main content

Preparation and Investigation of Interfaces of Co2Cr1−x Fe x Al Thin Films

  • Chapter
Spintronics
  • 2980 Accesses

Abstract

In the framework of spin polarization investigations of Heusler compounds by the measurement of the magnetoresistance (TMR) of tunneling junctions with AlO x barrier special emphasis is put on the role of the interfaces.

It is demonstrated how an unsuitable morphology can limit the TMR. The barrier morphology could be improved by inserting a Mg layer at the Heusler/barrier interface. Evidence is given that this very thin Mg layer is acting as a seed layer for improving the Al morphology and not as a barrier for coherent MgO tunneling. Thus the Jullière model can be used for evaluating a relatively large spin polarization of 67 % for the B2 ordered Heusler compound Co2Cr0.6Fe0.4Al, which is close to theoretical predictions.

The magnetic surface and bulk moments of the ferromagnetic Heusler compounds Co2Cr0.6Fe0.4Al and Co2CrAl were comparatively investigated by X-ray magnetic circular dichroism measurements (collaboration with Prof. H.-J. Elmers). We provide evidence that the magnetism of the film interface region is fully developed with an interface magnetic ordering temperature which can be higher than in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moodera JS, Mathon G (1999) J Magn Magn Mater 200:248

    Article  CAS  Google Scholar 

  2. Alanakis I (2002) J Phys Condens Matter 14:6329

    Article  Google Scholar 

  3. Wurmehl S, Fecher G, Kroth K, Kronast F, Dürr H, Takeda Y, Saitoh Y, Kobayashi K, Lin HJ, Schönhense G, Felser C (2006) J Phys D, Appl Phys 39:803

    Article  CAS  Google Scholar 

  4. Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH (2004) Nat Mater 3:862

    Article  CAS  Google Scholar 

  5. Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Nat Mater 3:868

    Article  CAS  Google Scholar 

  6. Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H (2008) Appl Phys Lett 93:082508

    Article  Google Scholar 

  7. Mavropoulos Ph, Papanikolaou N, Dederichs PH (2000) Phys Rev Lett 85:1088

    Article  CAS  Google Scholar 

  8. Butler WH, Zhang X-G, Schulthess TC, MacLaren JM (2001) Phys Rev B 63:054416

    Article  Google Scholar 

  9. Mathon J, Umersky A (2001) Phys Rev B 63:220403R

    Article  Google Scholar 

  10. Jullière M (1975) Phys Lett 54A:225

    Google Scholar 

  11. Galanakis I (2002) J Phys Condens Matter 14:6329

    Article  CAS  Google Scholar 

  12. Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H (2006) Appl Phys Lett 88:192508

    Article  Google Scholar 

  13. Ishikawa T, Hakamata S, Matsuda K, Uemura T, Yamamoto M (2008) J Appl Phys 103. 07A919

    Google Scholar 

  14. Tsunegi S, Sakuraba Y, Oogane M, Takanashi K, Ando Y (2008) Appl Phys Lett 93:112506

    Article  Google Scholar 

  15. Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M, Inomata K (2006) Appl Phys Lett 89:112514

    Article  Google Scholar 

  16. Ebke D, Schmalhorst J, Liu N-N, Thomas A, Reiss G, Hütten A (2006) Appl Phys Lett 89:162506

    Article  Google Scholar 

  17. Inomata K, Okamura S, Miyazaki A, Kikuchi M, Tezuka N, Wojcik M, Jedryka E (2006) J Phys D, Appl Phys 39:816

    Article  CAS  Google Scholar 

  18. Jourdan M, Arbelo Jorge E, Herbort C, Kallmayer M, Klaer P, Elmers HJ (2009) Appl Phys Lett 95:172504

    Article  Google Scholar 

  19. Arbelo Jorge E, Jourdan M, Kallmayer M, Klaer P, Elmers HJ (2010) J Phys Conf Ser 200:072006

    Article  Google Scholar 

  20. Galanakis I, Dederichs PH, Papanikolaou N (2002) Phys Rev B 66:174429

    Article  Google Scholar 

  21. Block T, Felser C, Jakob G, Ensling J, Mühling B, Gütlich P, Cava RJ (2003) J Solid State Chem 176:646

    Article  CAS  Google Scholar 

  22. Fecher G, Kandpal H, Wurmehl S, Morais J, Lin H-J, Elmers H-J, Schönhense G, Felser C (2005) J Phys Condens Matter 17:7237

    Article  CAS  Google Scholar 

  23. Miura Y, Nagao K, Shirai M (2004) Phys Rev B 69:144413

    Article  Google Scholar 

  24. Herbort C, Arbelo Jorge E, Jourdan M (2009) Appl Phys Lett 94:142504

    Article  Google Scholar 

  25. http://www.bam.de/de/service/publikationen/powder_cell.htm or http://www.ccp14.ac.uk/tutorial/powdcell/index.html

  26. Ksenofontov V, Herbort C, Jourdan M, Felser C (2008) Appl Phys Lett 92:262501

    Article  Google Scholar 

  27. Inomata K, Wojcik M, Jedrika E, Ikeda N, Tezuka T (2008) Phys Rev B 77:214425

    Article  Google Scholar 

  28. Marukame T, Ishikawa T, Hakamata S, Matsuda K, Uemura T, Yamamoto M (2007) Appl Phys Lett 90:012508

    Article  Google Scholar 

  29. Moodera JS, Nowak J, van de Veerdonk RJM (1998) Phys Rev Lett 80:2941

    Article  CAS  Google Scholar 

  30. Hagler T, Kinder R, Bayreuter G (2001) J Appl Phys 89:7570

    Article  CAS  Google Scholar 

  31. Yuan L, Liou SH, Wang D (2006) Phys Rev B 73:134403

    Article  Google Scholar 

  32. Schneider K, Schönhense G (2002) Rep Prog Phys 65:R1785

    Article  CAS  Google Scholar 

  33. Bechtholt PS (2005) In: 36th IFF spring school – magnetism goes nano

    Google Scholar 

  34. O’Brien WL, Tonner BP (1994) Phys Rev B 50:2963

    Article  Google Scholar 

  35. Regan TJ, Ohldag H, Stamm C, Nolting F, Lüning J, Stöhr J, White RL (2001) Phys Rev B 64:214422

    Article  Google Scholar 

  36. Thole BT, Carra P, Sette F, van der Laan G (1992) Phys Rev Lett 68:1943

    Article  CAS  Google Scholar 

  37. Carra P, Thole BT, Altarelli M, Wang X (1993) Phys Rev Lett 70:694

    Article  CAS  Google Scholar 

  38. Elmers HJ, Fecher GH, Valdaitsev D, Nepijko SA, Gloskovskii A, Jakob G, Schönhense G, Wurmehl S, Block T, Felser C, Cramm S (2003) Phys Rev B 67:104412

    Article  Google Scholar 

  39. Kallmayer M, Conca A, Jourdan M, Schneider H, Jakob G, Balke B, Gloskovskii A, Elmers HJ (2007) J Phys D, Appl Phys 40:1539

    Article  CAS  Google Scholar 

  40. Herbort C, Arbelo E, Jourdan M (2009) J Phys D, Appl Phys 42:8406

    Article  Google Scholar 

  41. Wagner K, Weber N, Elmers H-J, Gradmann U (1997) J Magn Magn Mater 167:21

    Article  CAS  Google Scholar 

  42. Ney A, Poulopoulos P, Farle M, Baberschke K (2000) Phys Rev B 62:11336

    Article  CAS  Google Scholar 

  43. Conca A, Jourdan M, Adrian H (2007) J Phys D, Appl Phys 40:1534

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the German research foundation (DFG-Jo404/4-1), project P11 in research unit 559, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jourdan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jourdan, M. (2013). Preparation and Investigation of Interfaces of Co2Cr1−x Fe x Al Thin Films. In: Felser, C., Fecher, G. (eds) Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3832-6_16

Download citation

Publish with us

Policies and ethics