Spintronics pp 331-342 | Cite as

Transport Properties of Co2(Mn, Fe)Si Thin Films

  • Horst Schneider
  • Enrique Vilanova Vidal
  • Gerhard Jakob


Thin Heusler films with the composition Co2Mn1−x Fe x Si were grown by both sputter and pulsed laser deposition. The samples show a high degree of structural order and very good magnetic properties. The availability of thin film samples on dielectric substrates allowed the systematic investigation of their electronic properties by transport experiments. The normal Hall effect shows a transition from a hole-like charge transport in Co2MnSi to an electron-like transport in Co2FeSi. This is in agreement with calculations, which predict that the substitution of Mn by Fe leads to a band filling and a shift of the Fermi energy. Furthermore, the behavior of the anomalous Hall effect was studied. It is the sum of two opposing mechanisms: an intrinsic contribution, caused by the topology of the Fermi surface and a temperature dependent impurity scattering.


Fermi Surface Pulse Laser Deposition Hall Effect Heusler Alloy Band Structure Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the Deutsche Forschungsgemeinschaft (project P2 in research unit FOR 559).


  1. 1.
    Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H (2006) Appl Phys Lett 88:192508 CrossRefGoogle Scholar
  2. 2.
    Balke B, Fecher GH, Kandpal HC, Felser C, Kobayashi K, Ikenaga E, Kim JJ, Ueda S (2006) Phys Rev B 74:104405 CrossRefGoogle Scholar
  3. 3.
    Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin HJ, Morais J (2005) Phys Rev B 72:184434 CrossRefGoogle Scholar
  4. 4.
    Galanakis I, Dederichs PH, Papanikolaou N (2002) Phys Rev B 66:174429 CrossRefGoogle Scholar
  5. 5.
    Moodera JS, Kinder LR, Wong TM, Meservey R (1995) Phys Rev Lett 74:3273 CrossRefGoogle Scholar
  6. 6.
    Song JO, Lee SR, Shin HJ (2005) Curr Appl Phys 7:18 CrossRefGoogle Scholar
  7. 7.
    Hordequin C, Risouiu D, Ranna L, Pierre J (2000) Eur Phys J B 16:287 CrossRefGoogle Scholar
  8. 8.
    Husmann A, Singh LJ (2006) Phys Rev B 73:172417 CrossRefGoogle Scholar
  9. 9.
    Gofryk K, Kaczorowski D, Plackowski T, Mucha J, Leithe-Jasper A, Schnelle W, Yu G (2007) Phys Rev B 75:224426 CrossRefGoogle Scholar
  10. 10.
    Hurd CM (1972) The Hall effect in metals and alloys. Plenum, New York CrossRefGoogle Scholar
  11. 11.
    Butler WH (1984) Phys Rev B 29:4224 CrossRefGoogle Scholar
  12. 12.
    Evtushinsky DV, Kordyuk AA, Zabolotnyy VB, Inosov DS, Büchner B, Berger H, Patthey L, Follath R, Borisenko SV (2008) Phys Rev Lett 100:236402 CrossRefGoogle Scholar
  13. 13.
    Chadov S, Fecher GH, Felser C, Minár J, Braun J, Ebert H (2009) J Phys D, Appl Phys 42:084002 CrossRefGoogle Scholar
  14. 14.
    Schneider H, Jakob G, Kallmayer M, Elmers HJ, Cinchetti M, Balke B, Wurmehl S, Felser C, Aeschlimann M, Adrian H (2006) Phys Rev B 74:174426 CrossRefGoogle Scholar
  15. 15.
    Schneider H, Vilanova E, Balke B, Felser C, Jakob G (2009) J Phys D, Appl Phys 42:084012 CrossRefGoogle Scholar
  16. 16.
    Schneider H, Vilanova Vidal E, Chadov S, Fecher GH, Felser C, Jakob G (2010) J Magn Magn Mater 322:579 CrossRefGoogle Scholar
  17. 17.
    Kallmayer M, Pörsch P, Eichhorn T, Schneider H, Jenkins CA, Jakob G, Elmers HJ (2009) J Phys D, Appl Phys 42:084008 CrossRefGoogle Scholar
  18. 18.
    Kallmayer M, Klaer P, Schneider H, Arbelo Jorge E, Herbort C, Jakob G, Jourdan M, Elmers HJ (2009) Phys Rev B 80:020406(R) CrossRefGoogle Scholar
  19. 19.
    Schneider H, Herbort C, Jakob G, Adrian H, Wurmehl S, Felser C (2007) J Phys D, Appl Phys 40:1548 CrossRefGoogle Scholar
  20. 20.
    Wurmehl S, Kohlhepp JT, Swagton HJM, Koopmans B, Blum CGF, Ksenofontov V, Schneider H, Jakob G, Ebke D, Reiss G (2009) J Phys D, Appl Phys 42:084017 CrossRefGoogle Scholar
  21. 21.
    Tezuka N, Okamura S, Miyazaki A, Kikuchi M, Inomata K (2006) J Appl Phys 99:08T314 CrossRefGoogle Scholar
  22. 22.
    Jourdan M, Conca A, Herbort C, Kallmayer M, Elmers HJ, Adrian H (2007) J Appl Phys 102:093710 CrossRefGoogle Scholar
  23. 23.
    Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schneider H, Jakob G, Postava K, Felser C (2007) J Phys D, Appl Phys 40:1563 CrossRefGoogle Scholar
  24. 24.
    Richter R, Wolf M, Goedsche F (1979) Phys Status Solidi B 95:473 CrossRefGoogle Scholar
  25. 25.
    Goodings DA (1963) Phys Rev 132:542 CrossRefGoogle Scholar
  26. 26.
    Kubo K, Ohata N (1972) J Phys Soc Jpn 33:21 CrossRefGoogle Scholar
  27. 27.
    Furukawa N (2000) J Phys Soc Jpn 69:1954 CrossRefGoogle Scholar
  28. 28.
    Campbell IA, Fert A (1982) Transport properties of ferromagnets. In: Ferromagnetic materials, vol 3. North-Holland, Amsterdam, p 747 Google Scholar
  29. 29.
    Ashcroft NW, Mermin ND (1976) Solid state physics. Harcourt Brace, New York Google Scholar
  30. 30.
    Minár J, Chioncel L, Perlov A, Ebert H, Katsnelson MI, Lichtenstein AI (2005) Phys Rev B 72:045125 CrossRefGoogle Scholar
  31. 31.
    Smit J (1958) Physica 24:39 CrossRefGoogle Scholar
  32. 32.
    Fang Z, Nagaosa N, Takahashi KS, Asamitsu A, Ogasawara RMT, Yamada M H, Tokura KY, Terakura K (2003) Science 302:92 CrossRefGoogle Scholar
  33. 33.
    Onoda S, Sugimoto N, Nagaosa N (2006) Phys Rev Lett 97:126602 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Horst Schneider
    • 1
  • Enrique Vilanova Vidal
    • 1
  • Gerhard Jakob
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg – UniversitätMainzGermany

Personalised recommendations