Skip to main content

Photomedicine

  • Chapter
  • First Online:
Applied Photochemistry

Abstract

This chapter discusses the various modalities of photomedicine, an interdisciplinary branch of medicine that involves the study and application of light with respect to health and disease. The following main concepts are covered: Photodynamic Therapy (PDT) for the treatment of cancer, PDT for bacterial infections, vascular PDT, photochemical internalisation, photochemical tissue bonding and the use of lasers in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The Nobel Prize in Physiology or Medicine 1903. http://nobelprize.org/nobel_prizes/medicine/laureates/1903/index.html

  2. Raab C (1900) Ber die wirkung fluoreszierender stoffe auf infu-soria. Z Biol 39:524–546

    CAS  Google Scholar 

  3. Tappeiner H, Jesionek H (1903) Therapeutische versuche mit fluo-reszierenden stoffen. Munch Med Wschr 50:2042–2044

    Google Scholar 

  4. Rajakumar K (2003) Vitamin D, cod-liver oil, sunlight, and rickets: a historical perspective. Pediatrics 112:e132–e135

    Article  Google Scholar 

  5. Cremer RJ, Perryman PW, Richards DH (1958) Influence of light on the hyper-bilirubinaemia of infants. Lancet 1:1094

    Article  CAS  Google Scholar 

  6. McDonagh AF, Lightner DA, Woolridge A (1979) Geometric isomerization of bilirubin-IX and its dimethyl ester. J Chem Soc Chem Commun 3:110

    Article  Google Scholar 

  7. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  CAS  Google Scholar 

  8. Wilson BC, Patterson MS (2008) The physics, biophysics, and technology of photodynamic therapy. Phys Med Biol 53:R61–R109

    Article  CAS  Google Scholar 

  9. Advances in photodynamic therapy: basic, translational and clinical (2008) Hamblin MR, Mróz P (eds), Artech House, London

    Google Scholar 

  10. Photodynamic therapy methods and protocols; series: methods in molecular biology (2010) In: Gomer CJ (ed), vol. 635. A product of Humana press, p 294

    Google Scholar 

  11. Wilson BC, Jeeves WP, Lowe DM, Adam G (1984) Light propagation in animal tissues in the wavelength range 375–825 nanometers. Progr Clin Biol Res 170:115–132

    CAS  Google Scholar 

  12. Ritz J-P, Roggan A, Isbert C, Müller G, Buhr HJ, Germer CT (2001) Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm. Lasers Surg Med 29:205–212

    Article  CAS  Google Scholar 

  13. Wilkinson F, Helman WP, Ross AB (1995) Quantum yields for the photosensitized forma-tion of the lowest electronically excited singlet state of molecular oxygen in solution. J Phys Chem Ref Data 24:663

    Article  CAS  Google Scholar 

  14. Hudson H, Boyle RW (2004) Strategies for selective delivery of photodynamic sensitisers to biological targets. J Porphyrins Phthalocyanines 8:954–975

    Article  CAS  Google Scholar 

  15. Sharmon WM, van Lier JE, Allen CM (2004) Targeted photodynamic therapy via receptor mediated delivery systems. Adv Drug Deliv Rev 56:53–76

    Article  Google Scholar 

  16. Hongcharu W, Taylor CR, Chang Y et al (2000) Topical ALA-photodynamic therapy for the treatment of acne vulgaris. J Investigative Dermatol 115:183–192

    Article  CAS  Google Scholar 

  17. Peng Q, Warloe T, Berg K et al (1997) 5-Aminolevulinic acid-based photodynamic therapy—clinical research and future challenges. Cancer 79:2282–2308

    Article  CAS  Google Scholar 

  18. Egorov SY, Kamalov VF, Koroteev NI et al (1989) The lifetime of singlet oxygen. Chem Phys Lett 163:421–424

    Article  CAS  Google Scholar 

  19. Chen B, Pogue BW, Hoopes PJ, Hasan T (2006) Vascular and cellular targeting for photo-dynamic therapy. Critical Rev Eukariotic Gene Express 16:279–305

    Article  Google Scholar 

  20. Arnold J, Kilmartin D, Olson J et al (2001) Verteporfin therapy of subfoveal choroidal ne-ovascularization in age-related macular degeneration: Two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. Am J Ophthalmol 131:541–560

    Article  Google Scholar 

  21. Arnold J, Kilmartin D, Olson J et al (2001) Photodynamic therapy of subfoveal choroidal neovascularization in pathologic myopia with verteporfin—1-year results of a randomized clinical trial—VIP report no. 1. Ophthalmology 108:841–852

    Article  Google Scholar 

  22. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450

    Article  CAS  Google Scholar 

  23. Jori G, Fabris C, Soncin M et al (2006) Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers Surg Med 38:468–481

    Article  Google Scholar 

  24. Phillips D (1997) Chemical mechanisms in photodynamic therapy with phthalocyanines. Prog React Kinetics 22:175–300

    CAS  Google Scholar 

  25. Berg K, Selbo PK, Prasmickaite L et al (1999) Photochemical internalization: A novel technology for delivery of macromolecules into cytosol. Cancer Res 59:1180–1183

    CAS  Google Scholar 

  26. Hogset A, Prasmickaite L, Selbo PK et al (2004) Photochemical internalisation in drug and gene delivery. Adv Drug Delivery Rev 56:95–115

    Article  CAS  Google Scholar 

  27. Kamegaya Y, Farinelli WA, Echague AVV et al (2005) Evaluation of photochemical tissue bonding for closure of skin incisions and excisions. Lasers Surg Med 37:264–270

    Article  Google Scholar 

  28. Tsao S, Yao M, Henry FP et al (2010) A phase I/II trial of photoactivated tissue bonding (“nanosuturing”) for excisional wound closure. J Investig Dermatol 130:S42–S42

    Google Scholar 

  29. Bhawalkar JD, Kumar ND, Zhao CF, Prasad PN (1997) Two-photon photodynamic therapy. J Clin Laser Med Surg 15:201

    CAS  Google Scholar 

  30. Fisher WG, Partridge WP, Dees C, Wachter EA (1997) Simultaneous two-photon activation of type-I photodynamic therapy agents. Photochem Photobiol 66:141–155

    Article  CAS  Google Scholar 

  31. Dy JT, Ogawa K, Satake A, Ishizumi A, Kobuke Y (2007) Water-soluble self-assembled butadiyne-bridged bisporphyrin: a potential two-photon-absorbing photosensitizer for photodynamic therapy. Chem Eur J 13:3491–3500

    Google Scholar 

  32. Balaz M, Collins HA, Dahlstedt E, Anderson HL (2009) Synthesis of hydrophilic conjugated porphyrin dimers for one-photon and two-photon photodynamic therapy at NIR wave-lengths. Org Biomol Chem 7:874–888

    Article  CAS  Google Scholar 

  33. Arnbjerg J, Jimenez-Banzo A, Paterson MJ et al (2007) Two-photon ab-sorption in tetra-phenylporphycenes: are porphycenes better candidates than porphyrins for providing optimal optical properties for two-photon photodynamic therapy? J Am Chem Soc 129:5188–5199

    Article  CAS  Google Scholar 

  34. Collins HA, Khurana M, Moriyama EH et al (2008) Blood-vessel closure using photosensitizers engineered for two-photon excitation. Nat Photonics 7:420–424

    Article  Google Scholar 

  35. Yanik MF, Cinar H, Cinar HN et al (2004) Functional regeneration after laser axotomy. Nature 432:882

    Article  Google Scholar 

Download references

Acknowledgments

The current work of MKK in the areas of biological imaging and photomedicine is supported by the UK’s Engineering and Physical Sciences Research Council (EPSRC) in the form of the Career Acceleration Fellowship (EP/E038980/1) and this support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina K. Kuimova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kuimova, M.K., Phillips, D. (2013). Photomedicine. In: Evans, R., Douglas, P., Burrow, H. (eds) Applied Photochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3830-2_9

Download citation

Publish with us

Policies and ethics