Skip to main content

Radiolytic and Photolytic Production of Free Radicals and Reactive Oxygen Species: Interactions with Antioxidants and Biomolecules

  • Chapter
  • First Online:
Applied Photochemistry

Abstract

This chapter discusses a variety of free radicals and other reactive oxygen species that are biologically and medically relevant. Radiolytic and/or photochemical methods of production for each reactive oxygen species are shown and for each type of reactive oxygen species some antioxidant and/or biomolecule interactions are discussed. Additionally, the techniques of laser flash photolysis and pulse radiolysis are described in detail and a comparison of the two techniques is made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nohl H (1990) Is redox-cycling ubiquinone involved in mitochondrial oxygen activation? Free Rad Res Comms 8:307–315

    CAS  Google Scholar 

  2. Benzie IFF (1996) Lipid peroxidation: a review of causes, consequences, measurement and dietary influences. Int J Food Sci Nutr 47:233–261

    CAS  Google Scholar 

  3. Pryor WA (1994) Free radicals and lipid peroxidation: what they are and how they got that way. In: Frei B (ed) Natural antioxidants in human health and disease. Academic Press Inc, New York

    Google Scholar 

  4. Kehrer JP, Smith CV (1994) Free radicals in biology: sources, reactivities, and roles in the etiology of human diseases. In: Frei B (ed) Natural antioxidants in human health and disease. Academic Press Inc, New York

    Google Scholar 

  5. Leake D (1995) The french paradox. The Biochemist 17:12–15

    Google Scholar 

  6. Marak GE, de Kozak Y, Faure JP (1990) Free radicals and antioxidants in the pathogenesis of eye diseases. In: Emerit I, Packer L, Auclair C (eds) Antioxidants in therapy and preventative medicine. Plenum Press, New York

    Google Scholar 

  7. Greenstock CL (1986) The role of free radicals in radiation chemical aging. Proc React Kinet 14:249–265

    CAS  Google Scholar 

  8. Fridovich I (1983) Superoxide radical: an endogeneous toxicant. Ann Rev Pharmacol Toxical 23:239–257

    CAS  Google Scholar 

  9. Bhabak KP, Mugesh G (2010) Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 43:1408–1419

    CAS  Google Scholar 

  10. Kehrer JP (2000) The Haber–Weiss reaction and mechanisms of toxicity. Toxicol 149:43–50

    CAS  Google Scholar 

  11. Jovanovic SV (1991) Antioxidant mechanisms: electron v’s H-atom transfer. In: Davies KJA (ed) Oxidative damage and repair. Pergamon Press, Oxford

    Google Scholar 

  12. Simic MG (1991) Antioxidant compounds: an overview. In: Davies KJA (ed) Oxidative damage and repair. Pergamon Press, Oxford

    Google Scholar 

  13. Niki E (1991) Antioxidant compounds. In: Davies KJA (ed) Oxidative damage and repair. Pergamon Press, Oxford

    Google Scholar 

  14. Briviba K, Sies H (1994) Nonenzymatic antioxidant defense systems. In: Frei B (ed) Natural antioxidants in human health and disease. Academic Press Inc, New York

    Google Scholar 

  15. Krinsky NI (1988) Membrane antioxidants. Ann New York Acad Sci 551:17–33

    CAS  Google Scholar 

  16. Ingold KU, Webb AC, Witter D et al (1987) Vitamin E remains the major lipid-soluble chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch Biochem Biophys 259:224–225

    CAS  Google Scholar 

  17. Bensasson RV, Land EJ, Truscott TG (1983) Flash photolysis and pulse radiolysis. Contributions to the chemistry of biology and medicine. Pergamon Press, Oxford

    Google Scholar 

  18. Norrish RGW, Porter G (1949) Chemical reactions produced by very high light intensities. Nature 164:658

    CAS  Google Scholar 

  19. Dorfman LM (1963) Pulse radiolysis: fast reaction studies in radiation chemistry. Science 141:493–498

    CAS  Google Scholar 

  20. Keene JP (1964) Pulse radiolysis apparatus. J Sci Instrum 41:493–496

    CAS  Google Scholar 

  21. Von Sonntag C (1987) Chemical basis of radiation biology. Taylor & Francis Ltd, London

    Google Scholar 

  22. Schwartz HA (1981) Free radicals generated by radiolysis of aqueous solutions. J Chem Educ 58:101–105

    Google Scholar 

  23. Simic MG (1990) Pulse radiolysis in study of oxygen radicals. Methods Enzymol 186:89–107

    CAS  Google Scholar 

  24. Neta P, Schuler RH (1971) Rate constants for reaction of hydrogen atoms with compounds of biochemical interest. Radiat Res 47:612–627

    CAS  Google Scholar 

  25. Alam MS, Rao BSM, Janata E (2001) A pulse radiolysis study of H atom reactions with aliphatic alcohols : evaluation of kinetics by direct optical absorption measurement. Phys Chem Chem Phys 3:2622–2624

    CAS  Google Scholar 

  26. Czapski G, Peled E (1968) On the pH-dependence of Greducing in the radiation chemistry of aqueous solutions. Isr J Chem 6:421–436

    CAS  Google Scholar 

  27. Janata E, Schuler RH (1982) Rate constant for scavenging of eaq- in N2O saturated solutions. J Phys Chem 86:2078–2084

    CAS  Google Scholar 

  28. Holroyd RA (1968) The reaction of nitrous oxide with excited molecules in the radiolysis and photolysis of liquid alkanes. In: Gould RF (ed) Radiation chemistry II. Advances in Chemistry Series. American Chemical Society, Washington

    Google Scholar 

  29. Herrmann H, Majdik Z, Ervens B et al (2003) Halogen production from aqueous tropospheric particles. Chemosphere 52:485–502

    CAS  Google Scholar 

  30. Harbour JR, Chow V, Bolton JR (1974) An electron spin resonance study of the spin adducts of OH and HO2 radicals with nitrones in the ultraviolet photolysis of aqueous hydrogen peroxide solutions. Can J Chem 52:3549–3553

    CAS  Google Scholar 

  31. Koppenol WH (1989) Generation and themodynamic properties of oxyradicals. In: CRC critical reviews in membrane lipid oxidation, vol 1. CRC Press, Boca Raton

    Google Scholar 

  32. Bors W, Lengfelder E, Saran M (1976) Reactions of oxygen radical species with methional: a pulse radiolysis study. Biochem Biophys Res Commun 70:81–87

    CAS  Google Scholar 

  33. Bahnemann D, Asmus K-D, Willson RL (1981) Free radical reactions of the phenothiazine, metiazinic acid. J Chem Soc Perkin Trans II:890–895

    Google Scholar 

  34. Shinohara H, Imamura A, Masuda T et al (1979) Molecular-orbital study on the partial reactivity of hydrogen of various amino-acids in the abstraction reaction by hydroxyl radical. Bull Chem Soc Japan 52:1–7

    CAS  Google Scholar 

  35. Steenken S (1989) Purine bases, nucleosides and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e and OH adducts. Chem Rev 89:503–520

    CAS  Google Scholar 

  36. Husain SR, Cillard J, Cillard P (1987) Hydroxyl radical scavenging activity of flavinoids. Phytochemistry 26:2489–2491

    CAS  Google Scholar 

  37. Neta P, Hoffman MZ, Simic M (1972) Electron spin resonance and pulse radiolysis studies of the reactions of OH and O radicals with aromatic and olefinic compounds. J Phys Chem 76:847–853

    CAS  Google Scholar 

  38. Özyürek M, Bektaşoğlu B, Güçlü K et al (2008) Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation. Anal Chim Acta 616:196–206

    Google Scholar 

  39. Singh U, Barik A, Priyadarsini KI (2009) Reactions of hydroxyl radical with bergenin, a natural poly phenol studied by pulse radiolysis. Bioorg Med Chem 17:6008–6014

    CAS  Google Scholar 

  40. Sawer DT, Nanni EJ, Roberts JL (1982) The reaction chemistry of superoxide ion in aprotic media. Adv Chem Ser 201:585–600

    Google Scholar 

  41. McCord JM, Fridovich I (1968) The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243:5753–5760

    CAS  Google Scholar 

  42. Valentine JS, Curtis AB (1975) A convenient preparation of solutions of superoxide anion and the reaction of superoxide anion with a copper (II) complex. J Am Chem Soc 97:224–226

    CAS  Google Scholar 

  43. Markert M, Andrews PC, Babior BM (1984) Measurement of O2 production by human neutrophils. The preparation and assay of NADPH oxidase-containing particles from human neutrophils. Methods Enzymol 105:358–365

    CAS  Google Scholar 

  44. Nadezhdin A, Dunford HB (1979) Oxidation of nicotinamide adenine dinucleotide by hydroperoxyl radical, a flash photolysis study. J Phys Chem 83:1957–1961

    CAS  Google Scholar 

  45. Vaish SP, Tollin G (1971) Flash photolysis of flavins. V. Oxidation and disproportionation of flavin radicals. J Bioenerg 2:61–72

    CAS  Google Scholar 

  46. Bielski BHJ, Cabelli DE, Arudi RL et al (1985) Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    CAS  Google Scholar 

  47. Bielski BHJ, Allen AO (1977) Mechanism of the disproportionation of superoxide radicals. J Phys Chem 81:1048–1050

    CAS  Google Scholar 

  48. Maroz A, Anderson RF, Smith RAJ et al (2009) Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical: Implications for in vivo antioxidant activity. Free Radical Biol Med 46:105–109

    CAS  Google Scholar 

  49. Mishra B, Priyadarsinia K, Bbhide MK et al (2004) Reactions of superoxide radicals with curcumin: probable mechanisms by optical spectroscopy and EPR. Free Radical Res 38:355–362

    CAS  Google Scholar 

  50. Cabelli DE, Bielski BHJ (1983) Kinetics and mechanism for the oxidation of ascorbic acid/ascorbate by HO2/O2− radicals. A pulse radiolysis and stopped-flow photolysis study. J Phys Chem 87:1809–1812

    CAS  Google Scholar 

  51. Taubert D, Breitenbach T, Lazar A et al (2003) Reaction rate constants of superoxide scavenging by plant antioxidants. Free Radical Biol Med 35:1599–1607

    CAS  Google Scholar 

  52. Silva AMS, Filipe P, Seixas RSGR et al (2008) One-electron reduction of superoxide radical-anions by 3-alkylpolyhydroxyflavones in micelles. Effect of antioxidant alkyl chain length on micellar structure and reactivity. J Phys Chem B 112:11456–11461

    CAS  Google Scholar 

  53. Gorman AA, Rodgers MAJ (1981) Singlet molecular oxygen. Chem Soc Rev 10:205–231

    CAS  Google Scholar 

  54. Gorman AA, Hamblett I, Land EJ (1989) A pulse radiolysis based singlet oxygen luminescence facility. J Am Chem Soc 111:1876–1877

    CAS  Google Scholar 

  55. Land EJ (1991) Time-resolved luminescence-pulse radiolysis determination of the fractions of porphyrin photosensitizer triplets giving rise to singlet excited oxygen on quenching by ground state triplet oxygen. J Photochem Photobiol A Chem 61:165–170

    CAS  Google Scholar 

  56. Piette J (1991) Biological consequences associated with DNA oxidation mediated by singlet oxygen. J Photochem Photobiol 11:241–260

    CAS  Google Scholar 

  57. Girotti AW (1990) Photodynamic lipid peroxidation in biological systems. Photochem Photobiol 51:497–509

    CAS  Google Scholar 

  58. Badger RM, Wright AC, Whitlock RF (1965) Absolute intensities of the discrete and continuous absorption bands of oxygen gas at 1.26 and 1.065 μ and the radiative lifetime of the 1Δg state of oxygen. J Chem Phys 43:4345–4350

    CAS  Google Scholar 

  59. Neely WC, Martin JM, Barker SA (1988) Products and relative reaction rates of the oxidation of tocopherols with singlet molecular oxygen. Photochem Photobiol 48:423–428

    CAS  Google Scholar 

  60. Foote CS, Denny RW (1968) Chemistry of singlet oxygen. VII. Quenching by β-carotene. J Am Chem Soc 90:6233–6235

    CAS  Google Scholar 

  61. Farmilo A, Wilkinson F (1973) On the mechanism of quenching of singlet oxygen in solution. Photochem Photobiol 18:447–450

    CAS  Google Scholar 

  62. Liebler DC (1993) Antioxidant reactions of carotenoids. Ann New York Acad Sci 691:20–31

    CAS  Google Scholar 

  63. Oliveros E, Braun AM, Aminian-Saghafi T et al (1994) Quenching of singlet oxygen (1Δg) by carotenoid derivatives: Kinetic analysis by near infra-red luminescence. New J Chem 18:535–539

    CAS  Google Scholar 

  64. Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as antioxidants—a review. J Photochem Photobiol B: Biol 41:189–200

    CAS  Google Scholar 

  65. Cantrell A, McGarvey DJ, Truscott TG (2003) Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Arch Biochem Biophys 412:47–54

    CAS  Google Scholar 

  66. Telfer A, Dhami S, Bishop SM et al (1994) β-Carotene quenches singlet oxygen formed in isolated photosystem II reaction centers. Biochemistry 33:14469–14474

    CAS  Google Scholar 

  67. Boehm F, Edge R, Burke M et al (2001) Dietary uptake of lycopene protects human cells from singlet oxygen and nitrogen dioxide—ROS components from cigarette smoke. J Photochem Photobiol B: Biol 64:176–178

    Google Scholar 

  68. Neta P, Huie RE, Ross AB (1990) Rate constants for reactions of peroxyl radicals in fluid solutions. J Phys Chem Ref Data 19:413–513

    CAS  Google Scholar 

  69. Connor HD, Thurman RG, Galizi MD et al (1985) The formation of a novel free radical metabolite from CCl4, in the perfused rat liver and in vivo. J Biol Chem 261:4542–4548

    Google Scholar 

  70. Packer JE, Willson RL, Bahnemann D et al (1980) Electron transfer reactions of halogenated aliphatic peroxyl radicals: measurement of absolute rate constants by pulse radiolysis. J Chem Soc Perkin Trans II:296–299

    Google Scholar 

  71. Neta P, Huie RE, Maruthamuthu P et al (1989) Solvent effects in the reactions of peroxyl radicals with organic reductants. Evidence for proton-transfer-mediated electron transfer. J Phys Chem 93:7654–7659

    Google Scholar 

  72. Mohan H, Gopinathan C (1990) Oxidation reactions of bilirubin by peroxyl radicals in aqueous-solutions. Radiat Phys Chem 36:801–804

    CAS  Google Scholar 

  73. Cudina I, Jovanovic SV (1988) Free radical inactivation of trypsin. Radiat Phys Chem 32:497–501

    CAS  Google Scholar 

  74. Packer JE, Mahood JS, Willson RL et al (1981) Reactions of the trichloromethylperoxy free radical (Cl3COO.) with tryptophan, tryptophanyl-tyrosine and lysozyme. Int J Radiat Biol 39:135–141

    CAS  Google Scholar 

  75. Hill TJ, Land EJ, McGarvey DJ et al (1995) Interactions between carotenoids and the CCl3O2 radical. J Am Chem Soc 117:8322–8326

    CAS  Google Scholar 

  76. Edge R, Land EJ, McGarvey DJ et al (1998) Relative one-electron reduction potentials of carotenoid radical cations and the interaction of carotenoids with the vitamin E radical cation. J Am Chem Soc 120:4087–4090

    CAS  Google Scholar 

  77. Monacada S, Palmer RMJ, Higgs EA (1989) Biosynthesis of nitric oxide from l-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 38:1709–1715

    Google Scholar 

  78. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    CAS  Google Scholar 

  79. Arroyo PL, Hatch-Pigott V, Mower HF et al (1992) Mutagenicity of nitric oxide and its inhibition by antioxidants. Mutat Res 281:193–202

    CAS  Google Scholar 

  80. Pryor WA, Lightsey JW (1981) Mechanisms of nitrogen dioxide reactions: initiation of lipid peroxidation and the production of nitrous acid. Science 214:435–437

    CAS  Google Scholar 

  81. Koppenol WH, Moreno JJ, Pryor WA et al (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    CAS  Google Scholar 

  82. Richeson CE, Mulder P, Bowry VW et al (1998) The complex chemistry of peroxynitrite decompostion: new Insights. J Am Chem Soc 120:7211–7219

    CAS  Google Scholar 

  83. Ingrosso G (2002) Free radical chemistry and its concern with indoor air quality: an open problem. Mirochem J 73:221–236

    CAS  Google Scholar 

  84. Buxton GV, Greenstock CL, Helman WP et al (1988) Critical review of rate constants of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    CAS  Google Scholar 

  85. Wood PD, Mutus B, Redmond RW (1996) The mechanism of photochemical release of nitric oxide from S-nitrosoglutathione. Photochem Photobiol 64:518–524

    CAS  Google Scholar 

  86. Treinin A, Hayon E (1970) Absorption spectra and reaction kinetics of NO2, N2O3, and N2O4 in aqueous solution. J Am Chem Soc 92:5821–5828

    CAS  Google Scholar 

  87. Løgager T, Sehested K (1993) Formation and decay of peroxynitrous acid: a pulse radiolysis study. J Phys Chem 97:6664–6669

    Google Scholar 

  88. Boehm F, Tinkler JH, Truscott TG (1995) Carotenoids protect against cell membrane damage by the nitrogen dioxide radical. Nature Med 1:98–99

    CAS  Google Scholar 

  89. Goldstein S, Czapski G (1995) The reaction of NO with O •-2 and HO 2 a pulse radiolysis study. Free Rad Biol Med 19:505–510

    CAS  Google Scholar 

  90. Boehm F, Edge R, McGarvey DJ et al (1998) β-Carotene with vitamins E and C offer synergistic cell protection against NOx. FEBS Lett 436:387–389

    Google Scholar 

  91. Neta P, Huie RE (1986) Rate constants for reactions of NO3 radicals in aqueous solutions. J Phys Chem 90:4644–4648

    CAS  Google Scholar 

  92. Dogliotti L, Hayon E (1967) Transient species produced in the photochemical decomposition of ceric salts in aqueous solution. Reactivity of NO3 and HSO4 free radicals. J Phys Chem 71:3802–3808

    CAS  Google Scholar 

  93. Connelly NG, Geiger WE (1996) Chemical redox agents for organometallic chemistry. Chem Rev 96:877–910

    CAS  Google Scholar 

  94. Jackson TS, Xu A, Vita JA et al (1998) Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res 83:916–922

    CAS  Google Scholar 

  95. van Acker SABE, Tromp MNJL, Heanen GRMM et al (1995) Flavonoids as scavengers of nitric oxide radical. Biochem Biophys Res Commun 214:755–759

    Google Scholar 

  96. Rubbo H, Radi R, Anselmi D (2000) Nitric oxide reaction with lipid peroxyl radicals spares α-tocopherol during lipid peroxidation. J Biol Chem 275:10812–10818

    CAS  Google Scholar 

  97. Tibi S, Koppenol WH (2000) Reactions of peroxynitrite with phenolic and carbonyl compounds: flavonoids are not scavengers of peroxynitrite. Helv Chim Acta 83:2412–2424

    CAS  Google Scholar 

  98. Bartlett D, Church DF, Bounds PL et al (1995) The kinetics of the oxidation of L-ascorbic acid by peroxynitrite. Free Rad Biol Med 18:85–92

    CAS  Google Scholar 

  99. Pannala AS, Rice-Evans C, Sampson J et al (1998) Interaction of peroxynitrite with carotenoids and tocopherols within low density lipoprotein. FEBS Lett 423:297–301

    CAS  Google Scholar 

  100. Hogg N, Joseph J, Kalyanaraman B (1994) The oxidation of α-tocopherol and trolox by peroxynitrite. Arch Biochem Biophys 314:153–158

    CAS  Google Scholar 

  101. Everett SA, Dennis MF, Patel KB et al (1996) Scavenging of nitrogen dioxide, thiol, and sulphonyl free radicals by the nutritional antioxidant β-carotene. J Biol Chem 271:3988–3994

    CAS  Google Scholar 

  102. Pryor WA, Lightsey JW (1981) Mechanisms of nitrogen dioxide reactions: initiation of lipid peroxidation and the production of nitrous acid. Science 214:435–437

    CAS  Google Scholar 

  103. Kikugawa K, Hiramoto K, Tomiyama S et al (1997) β-Carotene effectively scavenges toxic nitrogen oxides: nitrogen dioxide and peroxynitrous acid. FEBS Lett 404:175–178

    CAS  Google Scholar 

  104. Barzaghi P, Herrmann H (2004) Kinetics and mechanisms of reactions of the nitrate radical (NO3) with substituted phenols in aqueous solution. Phys Chem Chem Phys 6:5379–5388

    CAS  Google Scholar 

  105. Venkatachalapathy B, Ramamurthy P (1996) Reactions of nitrate radical with amino acids in acidic aqueous medium: a flash photolysis investigation. J Photochem Photobiol A: Chem 93:1–5

    CAS  Google Scholar 

  106. Meli R, Nauser T, Latal P (2002) Reaction of peroxynitrite with carbon dioxide: intermediates and determination of the yield of CO •−3 and NO 2 . J Biol Inorg Chem 7:31–36

    CAS  Google Scholar 

  107. Huie RE, Clifton CL, Neta P (1991) Electron transfer reaction rates of the carbonate and sulfate radical anions. Radiat Phys Chem 38:477–481

    CAS  Google Scholar 

  108. Chen S, Cope VW, Hoffman MZ (1973) Behavior of CO3 radicals generated in the flash photolysis of carbonatoamine complexes of cobalt (III) in aqueous solution. J Phys Chem 77:1111–1116

    CAS  Google Scholar 

  109. Bisby RH, Johnson SA, Parker AW et al (1998) Time-resolved resonance Raman spectroscopy of the carbonate radical. J Chem Soc Faraday Trans 94:2069–2072

    CAS  Google Scholar 

  110. Miao J-L, Wang W-F, Pan J-X (2001) The scavenging reactions of nitrogen dioxide radical and carbonate radical by tea polyphenol derivatives: a pulse radiolysis study. Radiat Phys Chem 60:163–168

    CAS  Google Scholar 

  111. Lee YA, Yun BH, Kim SK et al (2007) Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate. Chem Eur J 13:4571–4581

    CAS  Google Scholar 

  112. Clifton CL, Huie RE (1993) Rate constants for some hydrogen abstraction reactions of the carbonate radical. Int J Chem Kinet 25:199–203

    CAS  Google Scholar 

  113. Chen S-N, Hoffman MZ (1973) Rate constants for the reaction of the carbonate radical with compounds of biochemical interest in neutral aqueous solution. Radiat Res 56:40–47

    CAS  Google Scholar 

  114. Brandt C, van Eldik R (1995) Transition metal-catalyzed oxidation of sulfur (IV) oxides. Atmospheric-relevant processes and mechanisms. Chem Rev 95:119–190

    CAS  Google Scholar 

  115. Mottley C, Harman LS, Mason RP (1985) Microsomal reduction of bisulfite (aqueous sulfur dioxide)—sulfur dioxide anion free radical formation by cytochrome P-450. Biochem Pharmacol 34:3005–3008

    CAS  Google Scholar 

  116. Mottley C, Mason RP, Chignell CF (1982) The formation of sulfur trioxide radical anion during the prostaglandin hydroperoxidase-catalyzed oxidation of bisulfite (hydrated sulfur dioxide). J Biol Chem 257:5050–5055

    CAS  Google Scholar 

  117. Das TN, Huie RE, Neta P (1999) Reduction potentials of SO •−3 , SO •−5 -, and S4O •3−6 radicals in aqueous solution. J Phys Chem A 103:3581–3588

    CAS  Google Scholar 

  118. Neta P, Huie RE, Harriman A (1987) One-electron-transfer reactions of the couple SO2/SO2 in aqueous solutions. Pulse radiolytic and cyclic voltammetric studies. J Phys Chem 91:1606–1611

    CAS  Google Scholar 

  119. Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17:1027–1284

    CAS  Google Scholar 

  120. Glass RS (1999) Sulfur radical cations. Top Curr Chem 205:1–87

    CAS  Google Scholar 

  121. Bonifačić M, Hug GL, Schöneich C (2000) Kinetics of the reactions between sulfide radical cation complexes, [S∴∴S]+ and [S∴N]+, and superoxide or carbon dioxide radical anions. J Phys Chem A 104:1240–1245

    Google Scholar 

  122. Bobrowski K, Hug GL, Pogochi D et al (2007) Sulfur radical cation-peptide bond complex in the one-electron oxidation of S-methylglutathione. J Am Chem Soc 129:9236–9245

    CAS  Google Scholar 

  123. Bonifačić M, Asmus K-D (1984) Radical reactions in aqueous disulphide-thiol systems. Int J Radiat Biol 46:35–45

    Google Scholar 

  124. Asmus K-D (1990) Sulfur-centered free radicals. Methods Enzymol 186:167–180

    Google Scholar 

  125. Kundu SC, Willson RL (1995) Thiyl (sulfhydryl/thiol) free radical reactions, vitamins, β-carotene and superoxide dismutase in oxidative stress: design and interpretation of enzymatic studies. Methods Enzymol 251:69–81

    CAS  Google Scholar 

  126. Wardman P, von Sonntag C (1995) Kinetic factors that control the rate of thiyl radicals in cells. Methods Enzymol 251:31–45

    CAS  Google Scholar 

  127. Sevilla MD, Becker D, Yan M (1990) The formation and structure of the sulfoxyl radicals RSO, RSOO, RSO 2 , and RSO2OO from the reaction of cysteine, glutathione and penicillamine thiyl radicals with molecular oxygen. Int J Radiat Biol 57:65–81

    CAS  Google Scholar 

  128. Horowitz A, Rajbenbach LA (1975) The free radical mechanism of the decomposition of alkylsulfonyl chlorides in liquid cyclohexane. J Am Chem Soc 97:10–13

    CAS  Google Scholar 

  129. Razskazovskii Y, Sevilla MD (1996) Reactions of sulphonyl peroxyl radicals with DNA and its components: hydrogen abstraction from the sugar backbone versus addition to pyrimidine double bonds. Int J Radiat Biol 69:75–87

    CAS  Google Scholar 

  130. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    CAS  Google Scholar 

  131. Erben-Russ B, Michel C, Bors W et al (1987) Absolute rate constants of alkoxyl radical reactlons in aqueous solution. J Phys Chem 91:2362–2365

    CAS  Google Scholar 

  132. Land EJ, Mukherjee T, Swallow AJ et al (1983) Reduction of the naphthazarin molecule as studied by pulse radiolysis. J Chem Soc Faraday Trans 1(79):391–404

    Google Scholar 

  133. Bansal KM, Fessenden RW (1976) Pulse radiolysis studies of the oxidation of phenols by SO4 and Br 2 in aqueous solutions. Radiat Res 67:1–8

    CAS  Google Scholar 

  134. EI’tsov AV, Studzinskii OP, Grebenkina VM (1977) Photoinitiation of the reactions of quinones. Russ Chem Rev 46:93–114

    Google Scholar 

  135. Small RD Jr, Scaiano JC, Patterson LK (1979) Radical processes in lipids. A laser photolysis study of t-butoxy radical reactivity toward fatty acids. Photochem Photobiol 29:49–51

    CAS  Google Scholar 

  136. Allen NS, Parkinson A, Loffelman FF et al (1983) Flash Photolysis and antioxidant activity. Polym Degrad Stab 5:403–413

    CAS  Google Scholar 

  137. Hoey BM, Butler J (1984) The repair of oxidized amino acids by antioxidants. Biochim Biophys Acta 791:212–218

    CAS  Google Scholar 

  138. Mukai K, Kikuchi S, Urano S (1990) Stopped-flow kinetic study of the regeneration reaction of tocopheroxyl radical by reduced ubiquinone-10 in solution. Biochim Biophys Acta 1035:77–82

    CAS  Google Scholar 

  139. Bisby RH, Parker AW (1991) Reactions of the α-tocopheroxyl radical in micellaer solutions studied by nanosecond laser flash photolysis. FEBS Lett 290:205–208

    CAS  Google Scholar 

  140. Bisby RH, Parker AW (1995) Reaction of ascorbate with the α-tocopheroxyl radical in micellar and bilayer membrane systems. Arch Biochem Biophys 317:170–178

    CAS  Google Scholar 

  141. Burke M, Edge R, Land EJ et al (2001) One-electron reduction potentials of dietary carotenoid radical cations in aqueous micellar environments. FEBS Lett 500:132–136

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Edge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Edge, R. (2013). Radiolytic and Photolytic Production of Free Radicals and Reactive Oxygen Species: Interactions with Antioxidants and Biomolecules. In: Evans, R., Douglas, P., Burrow, H. (eds) Applied Photochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3830-2_8

Download citation

Publish with us

Policies and ethics