Photodegradation of Pesticides and Photocatalysis in the Treatment of Water and Waste

  • M. Emília Azenha
  • Andreia Romeiro
  • Mohamed Sarakha


A brief overview on the main photoprocesses applied to the treatment of water and wastewater is presented. The photodegradation methods that have been applied to the oxidation of organic pollutants are described. A review on advanced oxidation processes (AOP’s) and photooxidation mechanisms in homogeneous and heterogeneous solution is presented and some practical applications discussed. Combinations of biological and chemical treatments are considered to be a good approach to improve the removal efficiencies and reduce costs.


Photocatalytic Activity Rose Bengal Advanced Oxidation Process Cyanuric Acid Heterogeneous Photocatalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Commission of the European Communities. Directive of the European Parliament and of the Council on environmental quality standards in the field of water policy and amending. Direc-tive 2000/60/EC. COM (2006) 397 final, Brussels, July 2006Google Scholar
  2. 2.
    Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698CrossRefGoogle Scholar
  3. 3.
    Burrows HD, Canle M, Santaballa JA, Steenken S (2002) Reaction pathway and mechanisms of photodegradation of pesticides. J Photoch Photob B Biol 67:71–108CrossRefGoogle Scholar
  4. 4.
    Bielski BHJ, Cabelli DE, Arudi RL (1985) Reactivity of HO2/O2-radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100CrossRefGoogle Scholar
  5. 5.
    Buxton GV, Greenstock CL, Helman WP, Rosss AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (HO/HO) in aqueous solution. J Phys Chem 17:513–886Google Scholar
  6. 6.
    Haag WR, Yao CCD (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013CrossRefGoogle Scholar
  7. 7.
    Murov SL, Carmichael I, Hug GL (eds) (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  8. 8.
    Braslavsky SE (2007) Glossary of terms used in photochemistry, 3rd edn. Pure Appl Chem 79:293–465CrossRefGoogle Scholar
  9. 9.
    Kalynasundaram K, Grätzel M (1993) Photosensitization and photocatalysis using inorganic and organometallic compounds. Kluwer Academic Publishers, DordrechtGoogle Scholar
  10. 10.
    Faria J (2008) The heterogeneous photocatalytic process. In: Figueiredo JL, Pereira MM, Faria J (eds) Catalysis from theory to application. Coimbra University Press, CoimbraGoogle Scholar
  11. 11.
    Herrmann JM (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 34:49–65CrossRefGoogle Scholar
  12. 12.
    Katsoulis DE (1998) A survey of applications of polyoxometalates. Chem Rev 98:359–388CrossRefGoogle Scholar
  13. 13.
    Hill CL, Prosser-McCartha CM (1995) Homogeneous catalysis by transition metal oxygen anion clusters. Coord Chem Rev 143:407–455CrossRefGoogle Scholar
  14. 14.
    Misono M (1987) Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal Rev Sci Eng 29:269–321CrossRefGoogle Scholar
  15. 15.
    Papaconstantinou E (1989) Photochemistry of polyoxometallates of molybdenum and tung-sten and/or vanadium. Chem Soc Rev 18:1–31CrossRefGoogle Scholar
  16. 16.
    Kozhevnikov IV, Kloestra KR, Sinnema A, Zandbergen HW, Van Bekkum H (1996) Study of catalysts comprising heteropoly acid H3PW12O40 supported on MCM-41 molecular sieve and amorphous silica. J Mol Catal A Chem 114:287–298CrossRefGoogle Scholar
  17. 17.
    Gall RD, Hill CL, Walker JE (1996) Carbon powder and fiber-supported polyoxometalate catalytic materials. Preparation, characterization, and catalytic oxidation of dialkyl sulfides as mustard (HD) analogues. Chem Mater 8:2523–2527CrossRefGoogle Scholar
  18. 18.
    Sattari D, Hill CL (1993) Catalytic carbon-halogen bond cleavage chemistry by redox-active polyoxometalates. J Am Chem Soc 115:4649–4657CrossRefGoogle Scholar
  19. 19.
    Mylonas A, Papaconstantinou E (1994) Photocatalytic degradation of chlorophenols to CO2 and HCl with polyoxotungstates in aqueous solution. J Mol Cat 92:261–267CrossRefGoogle Scholar
  20. 20.
    Mylonas A, Hiskia A, Papaconstantinou E (1996) Contribution to water purification using polyoxometalates. Aromatic derivatives, chloroacetic acids. J Mol Cat A Chem 114:191–200CrossRefGoogle Scholar
  21. 21.
    Texier I, Giannotti C, Malato S, Richter C, Delaire J (1999) Solar photodegradation of pesticides in water by sodium decatungstate. Catal Today 54:297–307CrossRefGoogle Scholar
  22. 22.
    Texier I, Delouis J-F, Delaire J, Giannotti C, Plaza P, Martin M (1999) Dynamics of the first excited state of the decatungstate anion studied by subpicosecond laser spectroscopy. Chem Phys Lett 311:139–145CrossRefGoogle Scholar
  23. 23.
    Tanielian C (1998) Decatungstate photocatalysis. Coord Chem Rev 178–180:1165–1181CrossRefGoogle Scholar
  24. 24.
    Tanielian C, Duffy K, Jones A (1997) Kinetic and mechanistic aspects of photocatalysis by polyoxotungstates: a laser flash photolysis, pulse radiolysis, and continuous photolysis study. J Phys Chem B 101:4276–4282CrossRefGoogle Scholar
  25. 25.
    Kim S, Yeo J, Choi W (2008) Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometalate as an electron transfer catalyst. Appl Catal B Environ 84:148–155CrossRefGoogle Scholar
  26. 26.
    Troupis A, Gkika E, Hiskia A, Papaconstantinou E (2006) Photocatalytic reduction of metals using polyoxometallates: recovery of metals or synthesis of metal nanoparticles. C R Chimie 9:851–857CrossRefGoogle Scholar
  27. 27.
    Lykakis IO, Tanielian C, Orfanopoulos M (2003) Decatungstate photocatalyzed oxidation of aryl alkanols. Electron transfer or hydrogen abstraction mechanism? Org Lett 5:2875–2878CrossRefGoogle Scholar
  28. 28.
    Troupis A, Triantis TM, Gkika et al (2009) Photocatalytic reductive–oxidative degradation of Acid Orange 7 by polyoxometalates. Appl Catal B Environ 86:98–107CrossRefGoogle Scholar
  29. 29.
    Hu M, Xu Y (2004) Photocatalytic degradation of textile dye X3B by heteropolyoxometalate acids. Chemosphere 54:431–434CrossRefGoogle Scholar
  30. 30.
    Rafqah S, Wong Wah Chung P, Forano C, Sarakha M (2008) Photocatalytic degradation of metsulfuron methyl in aqueous solution by decatungstate anions. J Photochem Photobiol A Chem 199:297–302CrossRefGoogle Scholar
  31. 31.
    Anpo M (2000) Utilization of TiO2 photocatalysts in green chemistry. Pure Appl Chem 72:1265–1270CrossRefGoogle Scholar
  32. 32.
    Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357CrossRefGoogle Scholar
  33. 33.
    IARC (2006) Titanium dioxide Group 2B, Monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer, World Health Organization, LyonGoogle Scholar
  34. 34.
    Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle bio-chemical disturbances in the brain. Ecotoxicology 18:939–951CrossRefGoogle Scholar
  35. 35.
    Herrmann JM (2010) Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal 99:461–468CrossRefGoogle Scholar
  36. 36.
    Gerischer H (1993) Photocatalytic purification and treatment of water and air. In: Ollis DF, Al-Ekabi H (eds) Photocatalytic purification and treatment of water and air. Elsevier Science, Amsterdam Google Scholar
  37. 37.
    Nakamura M, Negishi N, Kutsuna S et al (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A Chem 161:205–212CrossRefGoogle Scholar
  38. 38.
    Wu NL, Lee MS, Pon ZJ, Hsu JZ (2004) Effect of calcination atmosphere on TiO2 photo-catalysis in hydrogen production from methanol/water solution. J Photochem Photobiol A 163:277–280CrossRefGoogle Scholar
  39. 39.
    Cao YA, Yang WS, Zhang WF et al (2004) Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J Chem 28:218–222CrossRefGoogle Scholar
  40. 40.
    Li FB, Li XZ (2002) Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl Catal A Gen 288:15–27CrossRefGoogle Scholar
  41. 41.
    Venkatachalam N, Palanichamy M, Murugesan V (2007) Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A Chem 273:177–185CrossRefGoogle Scholar
  42. 42.
    Yu J, Liu S, Xiu Z et al (2008) Combustion synthesis and photocatalytic activities of Bi3+  doped TiO2 nanocrystals. J Alloy Compd 461:L17–L19CrossRefGoogle Scholar
  43. 43.
    Liu S, Chen X (2008) A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. J Hazard Mater 152:48–55CrossRefGoogle Scholar
  44. 44.
    Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516CrossRefGoogle Scholar
  45. 45.
    Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 Photocatalyst under visible light. Chem Lett 32:364–36519CrossRefGoogle Scholar
  46. 46.
    Serpone N, Maruthamuthu P, Pichat P et al (1995) Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol 85:247–255CrossRefGoogle Scholar
  47. 47.
    Lin CF, Wu CH, Onn ZN (2008) Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. J Hazard Mater 154:1033–1039CrossRefGoogle Scholar
  48. 48.
    Wang W, Serp P, Kalck P, Faria JL (2005) Photocatalytic degradation of phenol on MWNT and Titania composite catalysts prepared by a modified sol-gel method. Appl Catal B Environ 56:305–312CrossRefGoogle Scholar
  49. 49.
    Wang W, Serp P, Kalck P et al (2008) Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater Res Bull 43:958–967CrossRefGoogle Scholar
  50. 50.
    Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem 328:8–26CrossRefGoogle Scholar
  51. 51.
    Schiavello M (ed) (1988) Photocatalysis and environment: trends and applications. Kluwer Academic Pubublishers, DordrechtGoogle Scholar
  52. 52.
    Serpone N, Pelizzetti E (eds) (1989) Photocatalysis, fundamentals and applications. Wiley, New YorkGoogle Scholar
  53. 53.
    Herrmann JM, Guillard C, Pichat P (1993) Heterogeneous photocatalysis: an emerging technology for water treatment. Catal Today 17:7–20CrossRefGoogle Scholar
  54. 54.
    Guillard C, Disdier J, Herrmann JM et al (1999) Comparison of various Titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol. Catal Today 54:217–228CrossRefGoogle Scholar
  55. 55.
    Zepp RG, Helz GR, Crosby DG (eds) (1994) Aquatic surface photochemistry. Lewis Publishers, Boca RatonGoogle Scholar
  56. 56.
    Jansen F, Van Santen RA (1999) Environmental catalysis. Imperial College Press, LondonGoogle Scholar
  57. 57.
    Mazille F, Schoettl T, Klamerth N et al (2010) Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH. Water Res 44:3029–3038CrossRefGoogle Scholar
  58. 58.
    Schwarzenbach RP, Escher BI, Fenner K et al (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077CrossRefGoogle Scholar
  59. 59.
    Pelizzetti E, Minero C, Carlin C et al (1992) Identification of photocatalytic degradation pathways of 2-Cl-S- triazine herbicides and detection of their decomposition intermediates. Chemosphere 24:891–910CrossRefGoogle Scholar
  60. 60.
    Pelizzetti E, Carlin C, Minero C et al (1992) Degradation pathways of atrazine under solar light and in the presence of TiO2 colloidal particles. Sci Total Environ 123–124:161–169CrossRefGoogle Scholar
  61. 61.
    Minero C, Maurino V, Pelizzetti E (1997) Heterogeneous photocatalytic transformations of s-triazine derivates. Res Chem Interm 23:291–310CrossRefGoogle Scholar
  62. 62.
    Gianturco F, Chiodaroli CM, Bellobono IR et al (1997) Pilot-plant photomineralization of atrazine in aqueous solution, by photocatalytic membranes immobilising titanium dioxide and promoting photocatalysts. Fresenius Environ Bull 6:461–468Google Scholar
  63. 63.
    McMurray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A Chem 182:43–51CrossRefGoogle Scholar
  64. 64.
    Zhanqi G, Shaogui Y, Na T, Cheng S (2007) Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspension. J Hazard Mater 145:424–430CrossRefGoogle Scholar
  65. 65.
    Granados-Oliveros G, Páez-Mozo EA, Ortega FM et al (2009) Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl Catal B Environ 89:448–454CrossRefGoogle Scholar
  66. 66.
    Wang C, Li J, Mele G et al (2010) The photocatalytic activity of novel, substituted porphyrin/TiO2-based composites. Dyes Pigm 84:183–18920CrossRefGoogle Scholar
  67. 67.
    Mele G, Del Sole R, Vasapollo G et al (2003) Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine. J Catal 217:334–342Google Scholar
  68. 68.
    Wang C, Yang G-M, Li J et al (2009) Novel meso-substituted porphyrins: synthesis, characterization and photocatalytic activity of their TiO2-based composites. Dyes Pigm 80:321–328CrossRefGoogle Scholar
  69. 69.
    Silva M, Azenha ME, Pereira MM et al (2009) Immobilization of 5,10,15,20-tetrakis-(2-fluorophenyl)porphyrin into MCM-41 and NaY: routes toward photodegradation of pesticides. Pure Appl Chem 81:2025–2033CrossRefGoogle Scholar
  70. 70.
    Silva M, Azenha ME, Pereira MM et al (2010) Immobilization of halogenated porphyrins and their copper complexes in MCM-41: environmentally friendly photocatalysts for the degradation of pesticides. Appl Catal B Environ 100:1–9CrossRefGoogle Scholar
  71. 71.
    Mills A, Wang J (1998) Photomineralisation of 4-chlorophenol sensitised by TiO2 thin films. J Photochem Photobiol A Chem 118:53–63CrossRefGoogle Scholar
  72. 72.
    Herrmann JM, Disdier J, Pichat P et al (1998) TiO2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2,4-dichlorophenoxyacetic acid (2,4-D) and of benzofuran. Appl Catal B Environ 17:15–23CrossRefGoogle Scholar
  73. 73.
    Wuang KH, Hsieh YH, Chou MY, Chang CY (1998) Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Appl Catal B Environ 21:1–8CrossRefGoogle Scholar
  74. 74.
    Pera-Titus M, Garcia-Molina V, Banos MA et al (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256CrossRefGoogle Scholar
  75. 75.
    Huang DG, Liao SJ, Liu JM et al (2006) Preparation of visible-light responsive N-F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method. J Photochem Photobiol A Chem 184:282–288CrossRefGoogle Scholar
  76. 76.
    Miranda-García N, Suárez S, Sánchez B et al (2011) Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl Catal B Environ 103:294–301CrossRefGoogle Scholar
  77. 77.
    González LF, Sarria V, Sánchez F (2010) Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/UV. Bioresource Technol 101:3493–3499CrossRefGoogle Scholar
  78. 78.
    Perez M, Torrades F, Doménech X, Peral J (2002) Removal of organic contaminants in pa-per pulp effluents by AOPs: an economic study. J Chem Technol Biotechnol 77:5425–5532Google Scholar
  79. 79.
    Sun Y, Pignatello JJ (1993) Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV. Environ Sci Technol 27:304–310CrossRefGoogle Scholar
  80. 80.
    Pignatello JJ, Liu D, Huston P (1999) Evidence for an additional oxidant in the photoassisted Fenton reaction. Environ Sci Technol 33:1832–1839CrossRefGoogle Scholar
  81. 81.
    Kuo WG (1992) Decolorizing dye wastewater with Fenton’s reagent. Water Res 26:881–886CrossRefGoogle Scholar
  82. 82.
    Lipczynska-Kochany E (1991) Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction. Chemosphere 22:529–536CrossRefGoogle Scholar
  83. 83.
    Brand N, Mailhot G, Bolte M (1998) Degradation photoinduced by Fe(III): method of alkylphenol ethoxylates removal in water. Environ Sci Technol 32:2715–2720CrossRefGoogle Scholar
  84. 84.
    Benkelberg HJ, Warneck P (1995) Photodecomposition of iron (III) hydroxo and sulfato complexes in aqueous solution: wavelength dependence of OH and SO4- quantum yields. J Phys Chem 99:5214–5221CrossRefGoogle Scholar
  85. 85.
    Malato S, Blanco J, Richter C et al (1997) Low-concentrating CPC collectors for photocatalytic water detoxification: comparison with a medium concentrating solar collector. Water Sci Technol 35:157–164Google Scholar
  86. 86.
    Huang YH, Jen HY, Tsai HC, Chen HT (2010) Degradation of phenol using low concentration of ferric ions by the photo-Fenton process. J Taiwan Inst Chem Eng 41:699–704CrossRefGoogle Scholar
  87. 87.
    Safarzadeh-Amiri A, Bolton JR, Cater SR (1996) The use of iron in advanced oxidation processes. J Adv Oxid Technol 1:1821Google Scholar
  88. 88.
    Perez M, Torrades F, Garcia Hortal JA, Doménech X, Peral J (2002) Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Appl Catal B Environ 36:63–74CrossRefGoogle Scholar
  89. 89.
    Preez-Moya M, Graells M, Castells G et al (2010) Characterization of the degradation performance of the sulfamethazine antibiotic by photoFenton process. Water Res 44:2533–2540CrossRefGoogle Scholar
  90. 90.
    Al Momani FA, Shawaqfeha AT, Al-Zoubib H (2010) Comparison of different treatment alternatives for removal of pesticide from water solution. J Chem Technol Biotechnol 85:529–535Google Scholar
  91. 91.
    Ballesteros MM, Casas López JL, Oller I et al (2010) A comparative study of different tests for biodegradability enhancement determination during AOP treatment of recalcitrant toxic aqueous solutions. Ecotox Environ Saf 73:1189–1195CrossRefGoogle Scholar
  92. 92.
    Essam T, Aly Amin M, El Tayeb O et al (2007) Sequential photochemical–biological degradation of chlorophenols. Chemosphere 66:2201–2209CrossRefGoogle Scholar
  93. 93.
    Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B 37:1–15CrossRefGoogle Scholar
  94. 94.
    Bauer R, Waldner G, Fallmann et al (1999) The photo-fenton reaction and the TiO2/UV process for waste water treatment—novel developments. Catal Today 53:131–144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Emília Azenha
    • 1
  • Andreia Romeiro
    • 1
  • Mohamed Sarakha
    • 2
  1. 1.Departamento de Química da Faculdade de Ciências e Tecnologia da Universidade de CoimbraCoimbraPortugal
  2. 2.Université Blaise Pascal U.F.R. Sciences et Technologies Laboratoire de Photochimie MoléculaireAubière CedexFrance

Personalised recommendations