Advertisement

Experimental Techniques for Excited State Characterisation

  • J. Sérgio Seixas de Melo
  • João Pina
  • Fernando B. Dias
  • António L. Maçanita
Chapter

Abstract

The characterisation of the excited state of a molecule implies the determinations of the different quantum yields and lifetimes. Additionally, complex kinetic systems are frequently observed and need to be solved. In this contribution, we give our particular way of studying systems of organic molecules where we describe how a quantum yield of fluorescence (in fluid or rigid solution, or in film), phosphorescence, singlet oxygen and intersystem crossing can be experimentally determined. This includes a brief description of the equipments routinely used for these determinations. The interpretation of bi- and tri-exponential decays (associated with proton transfer, excimer/exciplex formation in the excited state) with the solution of kinetic schemes (with two and three excited species), and consequently the determination of the rate constants is also presented. Particular examples such as the excited state proton transfer in indigo (2-state system), the acid–base and tautomerisation equilibria in 7-hydroxy-4-methylcoumarin (3-state system), together with the classical examples of intramolecular excimer formation in 1,1’-dipyrenyldecane (2-state system) and 1,1’-dipyrenylpropane (3-state system) are given as illustrative examples.

Keywords

Quantum Yield Triplet State Fluorescence Quantum Yield Fluorescence Decay Maximum Entropy Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stern O, Volmer M (1919) Über die Abklingzeit der Fluoreszenz. Physikalische Zeitschrift 20:183–188Google Scholar
  2. 2.
    Murov S, Charmichael I, Hug GL (1993) Handbook of photochemistry. M Dekker Inc, New YorkGoogle Scholar
  3. 3.
    Karpovich DS, Blanchard GJ (1995) Relating the polarity-dependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. J Phys Chem 99:3951–3958CrossRefGoogle Scholar
  4. 4.
    Bensasson RV, Land EJ, Truscott TG (1993) Excited states and free radicals in biology and medicine. Oxford Science Publications, OxfordGoogle Scholar
  5. 5.
    Rusakowi R, Testa AC (1968) Comparison of quinine bisulfate and 9,10-diphenylanthracene as fluorescence standards. J Phys Chem 72:793–796CrossRefGoogle Scholar
  6. 6.
    Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Montalti M, Credi A, Prodi L, Gandolfi M (2006) Handbook of photochemistry. 3rd edn. CRC Presss, Boca RatonGoogle Scholar
  8. 8.
    Parker CA, (1968) Photoluminescence of solutions. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    deMello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9:230–233CrossRefGoogle Scholar
  10. 10.
    Palsson LO, Monkman AP (2002) Measurement of solid-state photoluminescence quantum yields using a fluorimeter. Adv Mater 14:757–758CrossRefGoogle Scholar
  11. 11.
    Pina J, Seixas de Melo J, Burrows HD et al (2008) Excited state properties of oligophenyl and oligothienyl swivel cruciforms. J Phys Chem B 112:1104–1111CrossRefGoogle Scholar
  12. 12.
    Pina J, Seixas de Melo J (2009) A comprehensive investigation of the electronic spectral and photophysical properties of conjugated naphthalene–thiophene oligomers. Phys Chem Chem Phys 11:8706–8713CrossRefGoogle Scholar
  13. 13.
    Kristiansen M, Scurlock RD, Iu KK, Ogilby PR (1991) Charge-transfer state and singlet oxygen (1Δg O2) production in photoexcited organic molecule-molecular oxygen complexes. J Phys Chem 95:5190–5197CrossRefGoogle Scholar
  14. 14.
    Martinez CG, Neumer A, Marti C et al (2003) Effect of the media on the quantum yield of singlet oxygen (O2(1Δg)) production by 9H-fluoren-9-one: solvents and solvent mixtures. Helv Chim Acta 86:384–397CrossRefGoogle Scholar
  15. 15.
    Carmichael I, Hug GL (1986) Triplet-triplet absorption spectra of organic molecules in condensed phases. J Phys Chem Ref Data 15:1–250CrossRefGoogle Scholar
  16. 16.
    Becker RS, Seixas de Melo J, Maçanita AL, Elisei F (1996) Comprehensive evaluation of the absorption, photophysical, energy transfer, structural, and theoretical properties of α-oligothiophenes with one to seven rings. J Phys Chem 100:18683–18695CrossRefGoogle Scholar
  17. 17.
    Kumar CV, Qin L, Das PK (1984) Aromatic thioketone triplets and their quenching behavior towards oxygen. J Chem Soc-Faraday Trans II 80:783–793CrossRefGoogle Scholar
  18. 18.
    Seixas de Melo J, Silva LM, Arnaut LG, Becker RS (1999) Singlet and triplet energies of α-oligothiophenes: a spectroscopic, theoretical, and photoacoustic study: extrapolation to polythiophene. J Chem Phys 111:5427–5434CrossRefGoogle Scholar
  19. 19.
    Pineiro M, Gonsalves A, Pereira MM et al (2002) New halogenated phenylbacteriochlorins and their efficiency in singlet-oxygen sensitization. J Phys Chem A 106:3787–3795CrossRefGoogle Scholar
  20. 20.
    Seixas de Melo J, Serpa C, Burrows HD, Arnaut LG (2007) The triplet state of indigo. Angew Chem Int Ed 46:2094–2096CrossRefGoogle Scholar
  21. 21.
    Seixas de Melo J, Moura AP, Melo MJ (2004) Photophysical and spectroscopic studies of indigo derivatives in their keto and leuco forms. J Phys Chem A 108:6975–6981CrossRefGoogle Scholar
  22. 22.
    Seixas de Melo J, Rondão R, Burrows HD et al (2006) Spectral and photophysical studies of substituted indigo derivatives in their keto forms. Chem Phys Chem 7:2303–2311CrossRefGoogle Scholar
  23. 23.
    Becker RS (1969) Theory and interpretation of fluorescence and phosphorescence. Wiley-Interscience, New YorkGoogle Scholar
  24. 24.
    Land EJ (1968) Extinction coefficients of triplet–triplet transitions. Proc Royal Soc Lond A 305:457–471CrossRefGoogle Scholar
  25. 25.
    Bensasson R, Land EJ (1971) Triplet-triplet extinction coefficients via energy transfer. Trans Faraday Soc 67:1904–1915CrossRefGoogle Scholar
  26. 26.
    Keene JP (1964) Pulse radiolysis equipment. J Sci Instrum 41:493–496CrossRefGoogle Scholar
  27. 27.
    Butler J, Hodgson BW, Hoey BM et al (1989) Experimental studies of some moderately fast processes initiated by radiation. Radiat Phys Chem 34:633–646Google Scholar
  28. 28.
    Monkman AP, Burrows HD, Miguel MD et al (2001) Triplet state spectroscopy of conjugated polymers studied by pulse radiolysis. Synth Met 116:75–79CrossRefGoogle Scholar
  29. 29.
    Cooper R, Thomas JK (1968) Formation of excited states in the nanosecond-pulse radiolysis of solutions of benzene and toluene. J Chem Phys 48:5097–6002CrossRefGoogle Scholar
  30. 30.
    Candeias LP, Wildeman J, Hadziioannou G, Warman JM (2000) Pulse radiolysis—optical absorption studies on the triplet states of p-phenylenevinylene oligomers in solution. J Phys Chem B 104:8366–8371CrossRefGoogle Scholar
  31. 31.
    Hoofman R, de Haas MP, Siebbeles LDA, Warman JM (1998) Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene). Nature 392:54–56CrossRefGoogle Scholar
  32. 32.
    Grozema FC, Siebbeles LDA, Warman JM et al (2002) Hole conduction along molecular wires: σ-bonded silicon versus π-bond-conjugated carbon. Adv Mater 14:228–231CrossRefGoogle Scholar
  33. 33.
    Burrows HD, Seixas de Melo J, Serpa C et al (2001) S1∼>T1 intersystem crossing in π-conjugated organic polymers. J Chem Phys 115:9601–9606CrossRefGoogle Scholar
  34. 34.
    Monkman AP, Burrows HD, Miguel MD et al (1999) Measurement of the S0–T1 energy gap in poly(2-methoxy,5-(2′-ethyl-hexoxy)–p-phenylenevinylene) by triplet–triplet energy transfer. Chem Phys Lett 307:303–309CrossRefGoogle Scholar
  35. 35.
    Pina J, Seixas de Melo J, Burrows HD et al (2009) Alternating binaphthyl—thiophene copolymers: synthesis, spectroscopy, and photophysics and their relevance to the question of energy migration versus conformational relaxation. Macromolecules 42:1710–1719CrossRefGoogle Scholar
  36. 36.
    Fonseca SM, Pina J, Arnaut LG et al (2006) Triplet-state and singlet oxygen formation in fluorene-based alternating copolymers. J Phys Chem B 110:8278–8283CrossRefGoogle Scholar
  37. 37.
    Maciejewski A, Steer RP (1993) The photophysics, physical photochemistry, and related spectroscopy of thiocarbonyls. Chem Rev 93:67–98CrossRefGoogle Scholar
  38. 38.
    Becker RS, Michl J (1966) Photochromism of synthetic and naturally occurring 2H-chromenes and 2H-pyrans. J Am Chem Soc 88(5931):5933Google Scholar
  39. 39.
    Becker RS, Dolan E, Balke DE (1969) Vibronic effects in photochemistry- competition between internal conversion and photochemistry. J Chem Phys 50:239–245CrossRefGoogle Scholar
  40. 40.
    Becker RS, Pelliccioli AP, Romani A et al (1999) Vibronic quantum effects in fluorescence and photochemistry. Competition between vibrational relaxation and photochemistry and consequences for photochemical control. J Am Chem Soc 121:2104–2109CrossRefGoogle Scholar
  41. 41.
    Becker RS, Favaro G, Romani A et al (2005) Vibronic effects in pathways of photochemistry and vibrational relaxation. Chem Phys 316:108–116CrossRefGoogle Scholar
  42. 42.
    Lenoble C, Becker RS (1986) Photophysics, photochemistry and kinetics of photochromic 2H-pyrans and chromenes. J Photochem 33:187–197CrossRefGoogle Scholar
  43. 43.
    Demas JN (1983) Excited state lifetime measurements. Academic Press, Inc, LondonGoogle Scholar
  44. 44.
    O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic Press, LondonGoogle Scholar
  45. 45.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Kluwer Academic, New YorkCrossRefGoogle Scholar
  46. 46.
    Zachariasse KA, Busse R, Schrader U et al (1982) Intramolecular siglet and triplet excimers with diphenanthrylpropanes. Chem Phys Lett 89:303–308CrossRefGoogle Scholar
  47. 47.
    Seixas de Melo J, Fernandes PF (2001) Spectroscopy and photophysics of 4- and 7-hydroxycoumarins and their thione analogs. J Mol Struct 565:69–78CrossRefGoogle Scholar
  48. 48.
    Maçanita AL, Costa FP, Costa S et al (1989) The 9-anthroate chromophore as a fluorescent probe for water. J Phys Chem 93:336–343CrossRefGoogle Scholar
  49. 49.
    Pina J, Seixas de Melo J, Burrows HD et al (2007) Spectral and photophysical studies of poly[2,6-(1,5-dioctylnaphthalene)]thiophenes. J Phys Chem C 111:7185–7191CrossRefGoogle Scholar
  50. 50.
    Striker G, Subramaniam V, Seidel CAM et al (1999) Photochromicity and fluorescence lifetimes of green fluorescent protein. J Phys Chem B 103:8612–8617CrossRefGoogle Scholar
  51. 51.
    Lima JC, Abreu I, Brouillard R, Maçanita AL (1998) Kinetics of ultra-fast excited state proton transfer from 7-hydroxy-4-methylflavylium chloride to water. Chem Phys Lett 298:189–195CrossRefGoogle Scholar
  52. 52.
    Boens N, Qin WW, Basaric N et al (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79:2137–2149CrossRefGoogle Scholar
  53. 53.
    Lampert RA, Chewter LA, Phillips D et al (1983) Standards for nanosecond fluorescence decay time measurements. Anal Chem 55:68–73CrossRefGoogle Scholar
  54. 54.
    Birks JB (1970) Photophysics of aromatic molecules. Wiley, LondonGoogle Scholar
  55. 55.
    Freitas AA, Quina FH, Fernandes AC, Maçanita AL (2010) Picosecond dynamics of the prototropic reactions of 7-hydroxyflavylium photoacids anchored at an anionic micellar surface. J Phys Chem A 114:4188–4196CrossRefGoogle Scholar
  56. 56.
    Stevens B, Ban MI (1964) Spectrophotometric determination of enthalpies and entropies of photoassociation for dissolved aromatic hydrocarbons. Trans Faraday Soc 60:1515–1523CrossRefGoogle Scholar
  57. 57.
    Boyce WE, DiPrima RC (1986) Elementary differential equations and boundary value problems, 4th edn. Wiley, New YorkGoogle Scholar
  58. 58.
    Zachariasse KA, Busse R, Duveneck G, Kühnle W (1985) Intramolecular monomer and excimer fluorescence with dipyrenylpropanes: double-exponential versus triple-exponential decays. J Photochem 28:237–253CrossRefGoogle Scholar
  59. 59.
    Zachariasse KA, Duveneck G, Kühnle W (1985) Double-exponential decay in intramolecular excimer formation: 1,3-di(2-pyrenyl)propane. Chem Phys Lett 113:337–343CrossRefGoogle Scholar
  60. 60.
    Zachariasse KA, Maçanita AL, Kühnle W (1999) Chain length dependence of intramolecular excimer formation with 1, n-bis(1-pyrenylcarboxy)alkanes for n = 1–16, 22, and 32. J Phys Chem B 103:9356–9365CrossRefGoogle Scholar
  61. 61.
    Serpa C, Gomes PJS, Arnaut LG et al (2006) Temperature dependence of ultra-exothermic charge recombinations. Chem Phys Chem 7:2533–2539CrossRefGoogle Scholar
  62. 62.
    Gordon M, Ware WR (1975) The exciplex. Academic Press, New YorkGoogle Scholar
  63. 63.
    Waluk J (2000) Conformational analysis of molecules in excited states. Wiley-VCH, New YorkGoogle Scholar
  64. 64.
    Becker HD (1993) Unimolecular photochemistry of anthracenes. Chem Rev 93:145–172CrossRefGoogle Scholar
  65. 65.
    Chandross EA, Thomas HT (1971) Intramolecular exciplex formation in naphthylalkylamines. Chem Phys Lett 9:393–396CrossRefGoogle Scholar
  66. 66.
    Hinatu J, Masuhara H, Mataga N et al (1978) Absorption spectra of inter- and intramolecular exciplex systems of pyrene and N, N-dimethylaniline in alcoholic solutions. Bull Chem Soc Jpn 51:1032–1036CrossRefGoogle Scholar
  67. 67.
    Itoh M, Mimura T, Usui H, Okamoto T (1973) Intramolecular exciplex and charge transfer complex formations in (9,10-dicyanoanthracene)-(trimethylene)-(naphthalene) systems. J Am Chem Soc 95:4388–4392CrossRefGoogle Scholar
  68. 68.
    Leinhos U, Kühnle W, Zachariasse KA (1991) Intramolecular charge transfer and thermal exciplex dissociation with p-aminobenzonitriles in toluene. J Phys Chem 95:2013–2021CrossRefGoogle Scholar
  69. 69.
    Swinnen AM, Vanderauweraer M, De Schryver FC et al (1987) Photophysics of the intramolecular exciplex formation in omega-(1-pyrenyl)-alpha-(dimethylamino)alkanes. J Am Chem Soc 109(321):330Google Scholar
  70. 70.
    Fajardo ME, Withnall R, Feld J et al (1988) Condensed phase laser induced harpoon reactions. Laser Chem 9:1–3CrossRefGoogle Scholar
  71. 71.
    Douhal A, Lahmani F, Zewail AH (1996) Proton-transfer reaction dynamics. Chem Phys 207:477–498CrossRefGoogle Scholar
  72. 72.
    Arnaut LG, Formosinho SJ (1993) Excited-state proton transfer reactions I. Fundamentals and intermolecular reactions. J Photochem Photobiol A-Chem 75:1–20CrossRefGoogle Scholar
  73. 73.
    Laws WR, Brand L (1979) Analysis of two-state excited-state reactions. The fluorescence decay of 2-naphthol. J Phys Chem 83:795–802CrossRefGoogle Scholar
  74. 74.
    Nunes RMD, Pineiro M, Arnaut LG (2009) Photoacid for extremely long-lived and reversible pH-jumps. J Am Chem Soc 131:9456–9462CrossRefGoogle Scholar
  75. 75.
    Aloisi GG, Latterini L, Maçanita AL et al (2003) Singlet and triplet state properties of substituted flavothiones. Phys Chem Chem Phys 5:69–3464CrossRefGoogle Scholar
  76. 76.
    Costa T, Pina J, de Seixas Melo J (2009) Photophysical processes in polymers and oligomers. Spec Period Rep Photochem 37:44–71CrossRefGoogle Scholar
  77. 77.
    Seixas de Melo J, Maçanita AL (1993) Three interconverting excited species: experimental study and solution of the general photokinetic triangle by time-resolved fluorescence. Chem Phys Lett 204:556–562CrossRefGoogle Scholar
  78. 78.
    Dias A, Varela AP, Miguel MD et al (1996) β-Carbolines. 2. Rate constants of proton transfer from multiexponential decays in the lowest singlet excited state of harmine in water as a function of pH. J Phys Chem 100:17970–17977CrossRefGoogle Scholar
  79. 79.
    Dias A, Varela AP, Miguel MD et al (1992) β -Carboline photosensitizers. 1. Photophysics, kinetics and excited-state equilibria in organic solvents, and theoretical calculations. J Phys Chem 96:10290–10296CrossRefGoogle Scholar
  80. 80.
    Seixas de Melo J, Costa T, Francisco A et al (2007) Dynamics of short as compared with long poly(acrylic acid) chains hydrophobically modified with pyrene, as followed by fluorescence techniques. Phys Chem Chem Phys 9:1370–1385CrossRefGoogle Scholar
  81. 81.
    Costa T, Miguel MG, Lindman B et al (2005) Dynamics and energetics of the self-assembly of a hydrophobically modified polyelectrolyte: naphthalene-labeled poly(acrylic acid). J Phys Chem B 109:11478–11492CrossRefGoogle Scholar
  82. 82.
    Dias FB, Lima JC, Pierola IF et al (2001) Internal dynamics of poly(methylphenylsiloxane) chains as revealed by picosecond time resolved fluorescence. J Phys Chem A 105:10286–10295CrossRefGoogle Scholar
  83. 83.
    Masuhara H, Tamai N, Mataga N et al (1983) Excimer formation in poly(N-vinylcarbazole) and its model compounds as revealed by picosecond time-resolved absorption spectroscopy. Chem Phys Lett 95:471–475CrossRefGoogle Scholar
  84. 84.
    Vandendriessche J, Palmans P, Toppet S et al (1984) Configurational and conformational aspects in the excimer formation of bis(carbazoles). J Am Chem Soc 106(8057):8064Google Scholar
  85. 85.
    Berberan-Santos MN, Bodunov EN, Valeur B (2005) Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential). Chem Phys 315:171182CrossRefGoogle Scholar
  86. 86.
    Webber SE (1990) Photon-harvesting polymers. Chem Rev 90:1469–1482CrossRefGoogle Scholar
  87. 87.
    Noronha M, Lima JC, Paci E et al (2007) Tracking local conformational changes of ribonuclease A using picosecond time-resolved fluorescence of the six tyrosine residues. Biophys J 92:4401–4414CrossRefGoogle Scholar
  88. 88.
    Noronha M, Santos R, Paci E et al (2009) Fluorescence lifetimes of tyrosine residues in cytochrome c′′ as local probes to study protein unfolding. J Phys Chem B 113:4466–4474CrossRefGoogle Scholar
  89. 89.
    Zachariasse KA, Striker G (1988) Three and only three excited-state species (one monomer and two excimers) in 1,3-di(1-pyrenyl)propane. Chem Phys Lett 145:251CrossRefGoogle Scholar
  90. 90.
    Liu YS, Ware WR (1993) Photophysics of polycyclic aromatic hydrocarbons adsorbed on silica gel surfaces. 1. Fluorescence lifetime distribution analysis: an ill-conditioned problem. J Phys Chem 97:5980–5986CrossRefGoogle Scholar
  91. 91.
    Dias FB, Knaapila M, Monkman AP, Burrows HD (2006) Fast and slow time regimes of fluorescence quenching in conjugated polyfluorene—fluorenone random copolymers: The role of exciton hopping and Dexter transfer along the polymer backbone. Macromol 39:1598–1606CrossRefGoogle Scholar
  92. 92.
    Dias FB, Kamtekar KT, Cazati T et al (2009) Exciton diffusion in polyfluorene copolymer thin films: kinetics, energy disorder and thermally assisted hopping. Chem Phys Chem 10:2096–2104CrossRefGoogle Scholar
  93. 93.
    Lakowicz JR, Johnson ML, Joshi N et al (1986) Transient effects in quenching detected by harmonic-content frequency-domain fluorometry. Chem Phys Lett 131:343–348CrossRefGoogle Scholar
  94. 94.
    Pina J, Seixas de Melo J, Batista RMF et al (2010) Synthesis and characterization of the ground and excited states of tripodal-like oligothienyl-imidazoles. J Phys Chem B 114:4964–4972CrossRefGoogle Scholar
  95. 95.
    Pina J, Seixas de Melo J, Burrows HD et al (2006) Spectral and photophysical studies on cruciform oligothiophenes in solution and the solid state. J Phys Chem B 110:15100–15106CrossRefGoogle Scholar
  96. 96.
    Zachariasse KA, Kühnle W, Leinhos U et al (1991) Time-resolved monomer and excimer fluorescence of 1,3-di(1-pyrenyl)propane at different temperatures: no evidence for distributions from picosecond laser experiments with nanosecond time resolution. J Phys Chem 95:5476–5488CrossRefGoogle Scholar
  97. 97.
    Zachariasse KA, Duveneck G, Kühnle W et al (1991) Multicomponent fluorescence decay analysis in intramolecular excimer formation with dipyrenylalkanes. In: Honda K (ed) Photophysical processes in organized molecular systems. Elsevier, Amsterdam, pp 83Google Scholar
  98. 98.
    Seixas de Melo J (2005) The influence of oxygen on the lifetime of luminescence probes. A simple device for degassing solutions for fluorescence experiments. Chem Educ 10:29–35Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. Sérgio Seixas de Melo
    • 1
  • João Pina
    • 1
  • Fernando B. Dias
    • 2
  • António L. Maçanita
    • 3
  1. 1.Department of ChemistryUniversity of CoimbraCoimbraPortugal
  2. 2.OEM Research Group, Department of PhysicsDurham UniversityDurhamUK
  3. 3.Centro de Química EstruturalInstituto Superior Técnico (IST)LisbonPortugal

Personalised recommendations