Skip to main content

The Photochemical Laboratory

  • Chapter
  • First Online:
Applied Photochemistry

Abstract

In this chapter we describe the basic photochemical instrumentation, instrument components and consumables, which make up a general photochemical laboratory. We consider factors such as sample preparation, optical properties of the sample, and contributions from background interferences, which can all affect the data obtained. We discuss the different accessories available, to optimise or perform more complex measurements such as fluorescence anisotropy and quantum yields. We do not consider in detail the more expensive systems required for specialised experiments, which are discussed in Chap. 15, although we do describe the general principles of these methods. Finally, we describe a Photochemical Library, a reference to useful books, journals, organisations, websites, programs, and conferences for researchers in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armarego WLF, Chai CLL (2003) Purification of laboratory chemicals, 5th edn. Elsevier, New York

    Google Scholar 

  2. Reichart C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  Google Scholar 

  3. Mendham J, Denney RC, Barnes JD, Thomas MJK (2000) Vogel’s quantitative chemical analysis, 6th edn. Pearson Education Ltd, UK

    Google Scholar 

  4. Skoog DA, West DM, Holler FJ, Crouch SR (2003) Fundamentals of analytical chemistry, 8th edn. Thomson Brooks/Cole, USA

    Google Scholar 

  5. www.starna.co.uk. Accessed 31 Aug 2012

  6. Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  7. Schott (www.schott.com) currently supply this type of illumination system for microscopy. Accessed 31 Aug 2012

  8. www.uvp.com. Accessed 31 Aug 2012

  9. Milonni PW, Eberly JH (2010) Laser physics. Wiley, New Jersey

    Book  Google Scholar 

  10. Hollas JM (2004) Lasers and laser spectroscopy, Chapter 9, Modern spectroscopy, 4th edn. Wiley, UK

    Google Scholar 

  11. Suppliers include: Edmund optics. www.edmundoptics.eu. Accessed 19 June 2012; Acton optics and coatings. http://www.princetoninstruments.com/optics/. Accessed 19 June 2012

  12. Semrock bandpass filters. http://www.semrock.com/sets.aspx. Accessed 19 June 2012; Newport optics. http://www.newport.com/optical-filters/. Accessed 19 June 2012

  13. Calvert JG, Pitts JN (1966) Photochemistry. Wiley, New York Chapter 7

    Google Scholar 

  14. Jentof FC (2009) Ultraviolet-visible-near infrared spectroscopy in catalysis: theory, experiment, analysis and application under reaction conditions. In: Gates BC, Knözinger H (eds) Advances in catalysis, vol 52. Academic Press, Amsterdam

    Google Scholar 

  15. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedure. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  16. Hamamatsu Opto-semiconductor handbook. http://jp.hamamatsu.com/sp/ssd/tech_handbook_en.html. Accessed 5 May 2012

  17. Hamamatsu photomultiplier resource. http://sales.hamamatsu.com/assets/applications. -Accessed 5 May 2012

  18. http://www.oceanoptics.com/products/spectrometers. Accessed 19 June 2012

  19. Judd DB, Wyszecki G (1975) Color in business, science and industry. 3rd edn. Wiley, New York

    Google Scholar 

  20. Hunt RWG (1991) Measuring Colour. Ellis Horwood, Chichester

    Google Scholar 

  21. Talsky G (1994) Derivative spectrophotometry. VCH Publishers, New York

    Book  Google Scholar 

  22. The thermo scientific NanoDrop fluorospectrometer. www.nanodrop.com. Accessed 31 Aug 2012

  23. Thrush BA (2003) The genesis of flash photolysis. Photochem Photobiol Sci 2:453–454

    Article  CAS  Google Scholar 

  24. Windsor MW (2003) Photochem Photobiol Sci 2:455–458 (Photochem Photobiol Sci 2003, volume 2, issue 5, is an issue in commemoration of George Porter)

    Google Scholar 

  25. Kahlow MA, Jarzęba W, DeBrull TP et al (1988) Ultrafast emission spectroscopy in the ultraviolet by time-gated upconversion. Rev Sci Instrum 59:1098–1109

    Article  CAS  Google Scholar 

  26. The Cheaposcope. www.plantsci.cam.ac.uk/Haseloff/analysis/cheaposcope/index.html. Accessed 5 May 2012)

  27. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley, Weinheim

    Book  Google Scholar 

  28. Denk W, Strickler JH, Webb WT (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  Google Scholar 

  29. Diaspro A, Robello M (2000) Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures. J Photochem Photobiol B Biol 55:1–8

    Article  CAS  Google Scholar 

  30. Hausteib E, Schwille P (2007) Fluorescence correlation spectroscopy. Novel variations of an established technique. Ann Rev Biophys Biomol Struct 36:151–169

    Article  Google Scholar 

  31. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74:3597–3619

    Article  CAS  Google Scholar 

  32. Rasmussen A, Deckert V (2005) New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical micrsocopy. Anal Bioanal Chem 381:165–172

    Article  CAS  Google Scholar 

  33. Bates M, Huang B, Dempsey GT et al (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    Article  CAS  Google Scholar 

  34. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32

    Article  CAS  Google Scholar 

  35. www.laserlab-europe.eu. Accessed 5 May 2012

  36. www.clf.rl.ac.uk. Accessed 5 May 2012

  37. Demas JN, Crosby GA (1971) Measurement of photoluminescence quantum yields. J Phys Chem 75:991–1024

    Article  Google Scholar 

  38. Rondeau RE (1966) Slush baths. J Chem Eng Data 11:124

    Article  CAS  Google Scholar 

  39. www.gaussian.com. Accessed 5 May 2012

  40. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods: A guide to using Gaussian, 2nd edn. Gaussian, Pittsburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel C. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Douglas, P., Evans, R.C., Burrows, H.D. (2013). The Photochemical Laboratory. In: Evans, R., Douglas, P., Burrow, H. (eds) Applied Photochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3830-2_14

Download citation

Publish with us

Policies and ethics