Skip to main content

Optical Sensors and Probes

  • Chapter
  • First Online:
Applied Photochemistry

Abstract

Optical sensors and probes have emerged as valuable analytical tools for the detection of a variety of biologically and chemically important analytes in the last three decades. Our aim for this chapter is not simply to provide a catalogue of results from the literature, but rather to discuss the fundamental principles behind optical sensing and to provide a suitable entry point for new researchers in the field. We take a bottom-up approach to the design of an optical sensor, starting with the different optical parameters available for use in sensing and the various response mechanisms shown by different classes of optical probes. We then consider the various approaches available for translation of a molecular probe into an optical sensor platform, including the current state-of-the-art and future trends in sensor design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lakowicz JR (2006) Fluorescence sensing. In: Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  2. Ramamurthy V, Schanze KS (2001) Optical sensors and switches. vol 7. Marcel Dekker, New York

    Google Scholar 

  3. Narayanaswamy R, Wolfbeis O (2004) Optical sensors. Industrial, environmental and diagnostic applications. Springer, Berlin

    Google Scholar 

  4. McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422

    Article  CAS  Google Scholar 

  5. Baldini F, Chester AN, Homola J (eds) (2006) Optical chemical sensors. NATO Science Series II: Mathematics, Physics and Chemistry. Springer, New York

    Google Scholar 

  6. Lakowicz JR, Gryczynski I, Gryczynski Z, Dattelbaum JD (1999) Anisotropy based sensing with reference fluorophores. Anal Biochem 267:397–405

    Article  CAS  Google Scholar 

  7. Mohr GJ (2006) New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation—a review of recent developments. Anal Bioanal Chem 386:1201–1214

    Article  CAS  Google Scholar 

  8. Mendham J, Denney RC, Barnes JD, Thomas MJK (2000) Vogel’s textbook of quantitative chemical analysis, 3rd edn. Pearson Education, Edinburgh

    Google Scholar 

  9. Mills A (2009) Optical sensors for carbon dioxide and their applications. In: Baraton MI (ed) Sensors for environment, health and security, NATO Science for peace and security series C: environmental security. Springer, New York

    Google Scholar 

  10. Dansby-Sparks RN, Jin J, Mechery SJ et al (2010) Fluorescent-dye-doped sol−gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations. Anal Chem 82:593–600

    Article  CAS  Google Scholar 

  11. Badugu R, Lakowicz JR, Geddes CD (2003) A glucose sensing contact lens: A non-invasive technique for continuous physiological glucose monitoring. J Fluoresc 13:371–374

    Article  CAS  Google Scholar 

  12. For example see: http://www.mn-net.com/tabid/4650/Default.aspx, http://www.hach.com/nickel-cobalt-pocket-colorimeter-ii-test-kit/product?id=7640445220. Accessed 27th July 2011

  13. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  14. Yoon S, Miller EW, He Q et al (2007) A bright and specific fluorescent sensor for mercury in water, cells and tissue. Angew Chem Int Ed 46:6658–6661

    Article  CAS  Google Scholar 

  15. Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  16. Gunnlaugsson T, Ali HDP, Glynn M et al (2005) Fluorescent photoinduced electron transfer (PET) sensors for anions; from design to potential application. J Fluoresc 15:287–299

    Article  CAS  Google Scholar 

  17. Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476

    Article  Google Scholar 

  18. Johnson I, Spence MTZ (eds) (2010) Molecular probes handbook, a guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies, Inc., Eugene

    Google Scholar 

  19. Urbano E, Offenbacher H, Wolfbeis OS (1984) Optical sensor for the continuous determination of halides. Anal Chem 56:427–429

    Article  CAS  Google Scholar 

  20. Jayaraman S, Verkman AS (2000) Quenching mechanism of quinolinium-type chloride-sensitive fluorescent indicators. Biophys Chem 85:45–57

    Article  Google Scholar 

  21. Callan JF, de Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588

    Article  CAS  Google Scholar 

  22. de Silva AP, Moody TS, Wright GD (2009) Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst 134:2385–2393

    Article  Google Scholar 

  23. de Silva AP, McCaughan, McKinney BOF, Querol M (2003) Newer optical-based molecular devices from older coordination chemistry. Dalton Transactions, 1902–1913

    Google Scholar 

  24. Amao Y (2003) Probes and polymers for optical sensing of oxygen. Microchim Acta 143:1–12

    Article  CAS  Google Scholar 

  25. Douglas P, Eaton K (2001) Response characteristics of thin film oxygen sensors, Pt and Pt octaethylporphyrins in polymer films. Sens Act B 82:200–208

    Article  Google Scholar 

  26. Birch DJS, Rolinski OJ (2001) Fluorescence resonance energy transfer sensors. Res Chem Intermed 27:425–446

    Article  CAS  Google Scholar 

  27. Mohr GJ, Draxler S, Trznadelb K et al (1998) Synthesis and characterization of fluorophore-absorber pairs for sensing of ammonia based on fluorescence. Anal Chim Acta 360:119–138

    Article  CAS  Google Scholar 

  28. von Bültzingslöwen C, McEvoy AK, McDonagh C et al (2003) Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer. Anal Chim Acta 480:275–283

    Article  Google Scholar 

  29. Thomas SWT III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  CAS  Google Scholar 

  30. Liu Y, Ogawa K, Schanze KS (2009) Conjugated polyelectrolytes as fluorescent sensors. J Photochem Photobiol, C 10:173–190

    Article  CAS  Google Scholar 

  31. Toal SJ, Trogler WC (2006) Polymer sensors for nitroaromatic explosives detection. J Mater Chem 16:2871–2883

    Article  CAS  Google Scholar 

  32. Cumming CJ, Aker C, Fisher M et al (2001) Using novel fluorescent polymers as sensory materials for above ground sensing of chemical signature compounds emanating from buried landmines. IEEE Trans Geosci Remote Sensing 39:1119–1128

    Article  Google Scholar 

  33. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  34. von Lippert E (1957) Spektroskopische bistimmung des diplomentes aromatischer verbindungen im ersten angeregeten singulettzustand. Z Electrochem 61:962–975

    CAS  Google Scholar 

  35. Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bull Chem Soc Jpn 29:465–470

    Article  CAS  Google Scholar 

  36. Bagatolli LA, Gratton E (2000) Two-photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78:290–305

    Article  CAS  Google Scholar 

  37. Gaus K, Gratton E, Kable EPW et al (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100:15554–15559

    Article  CAS  Google Scholar 

  38. Turkyilmaz S, Chen WH, Mitomo H et al (2009) Loosening and reorganization of fluid phospholipid bilayers by chloroform. J Am Chem Soc 131:5068–5069

    Article  CAS  Google Scholar 

  39. Kuimova MK, Botchway SW, Parker A et al (2009) Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat Chem 1:69–73

    Article  CAS  Google Scholar 

  40. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Ann Rev Biochem 47:819–846

    Article  CAS  Google Scholar 

  41. Chandrasekhara N, Kelly LA (2001) A dual fluorescence temperature sensor based on perylene/exciplex interconversion. J Am Chem Soc 123:9898–9899

    Article  Google Scholar 

  42. Kunzelman J, Kinami M, Grenshaw BR et al (2008) Oligo(p-phenylene vinylene)s as a “new” class of piezochromic fluorophores. Adv Mater 20:119–122

    Article  CAS  Google Scholar 

  43. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  44. See: http://www.oceanoptics.com. Accessed 28th July 2012

  45. Shinar J, Shinar R (2008) Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. J Phys D Appl Phys 41:133001

    Article  Google Scholar 

  46. Mohr GJ (2006) Polymers for optical sensors. In: Baldini F, Chester AN, Homola J, Martellucci S (eds) Optical chemical sensors. Springer, New York

    Google Scholar 

  47. MacCraith BD, McDonagh C (2002) Enhanced fluorescence sensing using sol-gel materials. J Fluoresc 12:333–342

    Article  CAS  Google Scholar 

  48. Buck SM, Koo YEL, Park E (2004) Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr Opin Chem Biol 8:540–546

    Article  CAS  Google Scholar 

  49. Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol 9:538–544

    Article  CAS  Google Scholar 

  50. Liu T, Sullivan JP (2004) Pressure and temperature sensitive paints. Springer, New York

    Google Scholar 

  51. Evans RC, Douglas P, Williams JAG et al (2006) A novel luminescence-based colorimetric oxygen sensor with a “traffic light” response. J Fluoresc 16:201–206

    Article  CAS  Google Scholar 

  52. Stich MIJ, Fischer LH, Wolfbeis O (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39:3102–3114

    Article  CAS  Google Scholar 

  53. Stich MIJ, Schaeferling M, Wolfbeis OS (2009) Multicolor fluorescent and permeation-selective microbeads enable simultaneous sensing of pH, oxygen, and temperature. Adv Mater 21:2216–2220

    Article  CAS  Google Scholar 

  54. Anzenbacher P Jr, Lubal P, Buček P et al (2010) A practical approach to optical cross-reactive sensor arrays. Chem Soc Rev 39:3954–3979

    Article  CAS  Google Scholar 

  55. Ciosek P, Wróblewski W (2007) Sensor arrays for liquid sensing—electronic tongue systems. Analyst 132:963–978

    Article  CAS  Google Scholar 

  56. Lim SH, Feng L, Kemling JW (2009) An optoelectronic nose for the detection of toxic gases. Nat Chem 1:562–567

    Article  CAS  Google Scholar 

  57. Palacios MA, Wang Z, Montes VA et al (2008) Rational design of a minimal size sensor array for metal ion detection. J Am Chem Soc 130:10307–10314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel C. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Evans, R.C., Douglas, P. (2013). Optical Sensors and Probes. In: Evans, R., Douglas, P., Burrow, H. (eds) Applied Photochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3830-2_12

Download citation

Publish with us

Policies and ethics