Skip to main content

Synthesis of Phosphorus Compounds via Metal-Catalyzed Addition of P–H Bond to Unsaturated Organic Molecules

  • Chapter
  • First Online:
Book cover Phosphorus Compounds

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 37))

Abstract

In the present chapter we discuss transition-metal-catalyzed phosphorus-hydrogen (P–H) bond addition to the triple bond of alkynes and to the double bond of alkenes, dienes, imines, aldehydes and ketones. Main attention is paid to highlight the factors responsible for development of highly efficient catalytic systems and to carry out the addition reaction with high stereo-, regio- and enantioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso F, Beletskaya IP, Yus M (2004) Transition-metal-catalyzed addition of heteroatom–hydrogen bonds to alkynes. Chem Rev 104:3079–3160

    CAS  Google Scholar 

  2. Beletskaya IP, Kazankova MA (2002) Catalytic methods for building up phosphorus–carbon bond. Russ J Org Chem 38:1391–1430

    CAS  Google Scholar 

  3. Tanaka M (2004) Homogeneous catalysis for H–P bond addition reactions. Top Curr Chem 232:25–54

    CAS  Google Scholar 

  4. Coudray L, Montchamp J-L (2008) Recent developments in the addition of phosphinylidene-containing compounds to unactivated unsaturated hydrocarbons: phosphorus–carbon bond formation by hydrophosphinylation and related processes. Eur J Org Chem 3601–3613

    Google Scholar 

  5. Merino P, Marqués-López E, Herrera R (2008) Catalytic enantioselective hydrophosphonylation of aldehydes and imines. Adv Synth Catal 350:1195–1208

    CAS  Google Scholar 

  6. Baillie C, Xiao J (2003) Catalytic synthesis of phosphines and related compounds. Curr Org Chem 7:477–514

    CAS  Google Scholar 

  7. Delacroix O, Gaumont AC (2005) Hydrophosphination of unactivated alkenes, dienes and alkynes: a versatile and valuable approach for the synthesis of phosphines. Curr Org Chem 9:1851–1882

    CAS  Google Scholar 

  8. Quntar AAAA, Gallily R, Katzavian G, Srebnik M (2007) Potent anti-inflammatory activity of 3-aminovinylphosphonates as inhibitors of reactive oxygen intermediates, nitric oxides generation, and tumor necrosis factor-alpha release. Eur J Pharm 556:9–13

    CAS  Google Scholar 

  9. Doddridge ZA, Bertram RD, Hayes CJ, Soultanas P (2003) Effects of vinylphosphonate internucleotide linkages on the cleavage specificity of exonuclease III and on the activity of DNA polymerase I. Biochemistry 42:3239–3246

    CAS  Google Scholar 

  10. Jung K-Y, Hohl RJ, Wiemer AJ, Wiemer DF (2000) Synthesis of phosphonate derivatives of uridine, cytidine, and cytosine arabinoside. Bioorg Med Chem 8:2501–2509

    CAS  Google Scholar 

  11. Cermak DM, Wiemer DF, Lewis K, Hohl RJ (2000) 2-(Acyloxy)ethylphosphonate analogues of prenyl pyrophosphates: synthesis and biological characterization. Bioorg Med Chem 8:2729–2737

    CAS  Google Scholar 

  12. Amori L, Costantino G, Marinozzi M, Pellicciari R, Gasparini F, Flor PJ, Kuhn R, Vranesic I (2000) Synthesis, molecular modeling and preliminary biological evaluation of 1-amino-3-phosphono-3-cyclopentene-1-carboxylic acid and 1-amino-3-phosphono-2-cyclopentene-1-carboxylic acid, two novel agonists of metabotropic glutamate receptors of group III. Bioorg Med Chem Lett 10:1447–1450

    CAS  Google Scholar 

  13. Vidil C, Morere A, Garcia M, Barragan V, Hamdaoui B, Rochefort H, Montero J-L (1999) Synthesis and biological activity of phosphonate analogs of mannose 6-phosphate (M6P). Eur J Org Chem 447–450

    Google Scholar 

  14. Tian W, Zhu Z, Liao Q, Wu Y (1998) A practical synthesis of 3-substituted Δ3, 5(6)-steroids as new potential 5α-reductase inhibitor. Bioorg Med Chem Lett 8:1949–1952

    CAS  Google Scholar 

  15. Dragovich PS, Webber SE, Babine RE, Fuhrman SA, Patick AK, Matthews DA, Lee CA, Reich SH, Prins TJ, Marakovits JT, Littlefield ES, Zhou R, Tikhe J, Ford CE, Wallace MB, Meador JW, Ferre RA, Brown EL, Binford SL, Harr JEV, DeLisle DM, Worland ST (1998) Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 1. Michael acceptor structure—activity studies. J Med Chem 41:2806–2818

    CAS  Google Scholar 

  16. Lazrek HB, Khaїder H, Rochdi A, Barascut J-L, Imbach J-L (1996) Synthesis of new acyclic nucleoside phosphonic acids by Michael addition. Tetrahedron Lett 37:4701–4704

    CAS  Google Scholar 

  17. Wang D-Y, Hu X-P, Huang J-D, Deng J, Yu S-B, Duan Z-C, Xu X-F, Zheng Z (2007) Highly enantioselective synthesis of α-hydroxy phosphonic acid derivatives by Rh-catalyzed asymmetric hydrogenation with phosphine–phosphoramidite ligands. Angew Chem Int Ed 46:7810–7813

    CAS  Google Scholar 

  18. Hayashi T, Senda T, Takaya Y, Ogasawara M (1999) Rhodium-Catalyzed asymmetric 1,4-addition to 1-alkenylphosphonates. J Am Chem Soc 121:11591–11592

    CAS  Google Scholar 

  19. Giordano C, Castaldi G (1989) First asymmetric synthesis of enantiomerically pure (1R,2S)-(-)-(1,2-Epoxypropyl)phosphonic acid (Fosfomycin). J Org Chem 54:1470–1473

    CAS  Google Scholar 

  20. Thomas AA, Sharpless KB (1999) The Catalytic asymmetric aminohydroxylation of unsaturated phosphonates. J Org Chem 64:8379–8385

    CAS  Google Scholar 

  21. Burk MJ, Stammers TA, Straub JA (1999) Enantioselective synthesis of α-hydroxy and α-amino phosphonates via catalytic asymmetric hydrogenation. Org Lett 1:387–390

    CAS  Google Scholar 

  22. Sulzer-Mossé S, Tissot M, Alexakis A (2007) First enantioselective organocatalytic conjugate addition of aldehydes to vinyl phosphonates. Org Lett 9:3749–3752

    Google Scholar 

  23. Yokomatsu T, Yoshida Y, Suemune K, Yamagishi T, Shibuya S (1995) Enantioselective synthesis of threo-α,β-dihydroxyphosphonates by asymmetric dihydroxylation of vinylphosphonates. An application to the stereocontrolled synthesis of (4S,5S)-4-diethylphosphono-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane. Tetrahedron Asym 6:365–368

    CAS  Google Scholar 

  24. Cravotto G, Giovenzana GB, Pagliarin R, Palmisano G, Sisti M (1998) A straightforward entry into enantiomerically enriched β-Amino-α-hydroxyphosphonic acid derivatives. Tetrahedron Asym 9:745–748

    CAS  Google Scholar 

  25. Vieth S, Costisella B, Schneider M (1997) Tandem Michael addition alkylation of vinylphosphonates. Tetrahedron 53:9623–9628

    CAS  Google Scholar 

  26. Henry J-C, Lavergne D, Ratovelomanana-Vidal V, Genet J-P, Beletskaya IP, Dolgina TM (1998) Asymmetric hydrogenation of vinylphosphonic acids and esters with chiral Ru(II) Catalysts. Tetrahedron Lett 39:3473–3476

    CAS  Google Scholar 

  27. Zmudzka K, Johansson T, Wojcik M, Janicka M, Nowak M, Stawinski J, Nawrot B (2003) Novel DNA analogues with 2-, 3- and 4-pyridylphosphonate internucleotide bonds: synthesis and hybridization properties. New J Chem 27:1698–1705

    CAS  Google Scholar 

  28. Abbas S, Bertram RD, Hayes CJ (2001) Commercially available 5′-DMT phosphoramidites as reagents for the synthesis of vinylphosphonate-linked oligonucleic acids. Org Lett 3:3365–3367

    CAS  Google Scholar 

  29. Harnden MR, Parkin A, Parratt MJ, Perkins RM (1993) Novel acyclonucleotides: synthesis and antiviral activity of alkenylphosphonic acid derivatives of purines and a pyrimidine. J Med Chem 36:1343–1355

    CAS  Google Scholar 

  30. Lazrek HB, Rochdi A, Khaider H, Barascut J-L, Imbach J-L, Balzarini J, Witvrouw M, Pannecouque C, De Clercq E (1998) Synthesis of (Z) and (E) α-Alkenyl phosphonic acid derivatives of purines and pyrimidines. Tetrahedron 54:3807–3816

    CAS  Google Scholar 

  31. Agarwal KL, Riftina F (1979) Synthesis and enzymatic properties of deoxyribooligonucleotides containing methyl and phenylphosphonate linkages. Nucleic Acids Res 6:3009–3024

    CAS  Google Scholar 

  32. Minami T, Motoyoshiya J (1992) Vinylphosphonates in organic synthesis. Synthesis 333–349

    Google Scholar 

  33. Dembitsky VM, Quntar AAAA, Haj-Yehia A, Srebnik M (2005) Recent synthesis and transformation of vinylphosphonates. Mini Rev Org Chem 2:91–109

    CAS  Google Scholar 

  34. Failla S, Finocchiaro P, Consiglio GA (2000) Syntheses, characterization, stereochemistry and complexing properties of acyclic and macrocyclic compounds possessing α-Amino- or α-hydroxyphosphonate units: a review article. Heteroatom Chem 11:493–504

    CAS  Google Scholar 

  35. Maffei M (2004) Transition metal-promoted syntheses of vinylphosphonates. Curr Org Synth 1:355–375

    CAS  Google Scholar 

  36. Nagaoka Y (2001) Carbon–carbon bond formation based on alkenylphosphonates. Yakugaku Zasshi 121:771–779

    CAS  Google Scholar 

  37. Parvole J, Jannasch P (2008) Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state. Macromolecules 41:3893–3903

    CAS  Google Scholar 

  38. Sato T, Hasegawa M, Seno M, Hirano T (2008) Radical polymerization behavior of dimethyl vinylphosphonate: homopolymerization and copolymerization with trimethoxyvinylsilane. J Appl Polym Sci 109:3746–3752

    CAS  Google Scholar 

  39. Schmider M, Müh E, Klee JE, Mülhaupt R (2005) A versatile synthetic route to phosphonate-functional monomers, oligomers, silanes, and hybrid nanoparticles. Macromolecules 38:9548–9555

    CAS  Google Scholar 

  40. Senhaji O, Robin JJ, Achchoubi M, Boutevin B (2004) Synthesis and characterization of new methacrylic phosphonated surface active monomer. Macromol Chem Phys 205:1039–1050

    CAS  Google Scholar 

  41. Ebdon JR, Price D, Hunt BJ, Joseph P, Gao F, Milnes GJ, Cunliffe LK (2000) Flame retardance in some polystyrenes and poly(methyl methacrylate)s with covalently bound phosphorus-containing groups: initial screening experiments and some laser pyrolysis mechanistic studies. Polym Degrad Stab 69:267–277

    CAS  Google Scholar 

  42. Jin S, Gonsalves KE (1998) Synthesis and characterization of functionalized poly(ε-caprolactone) copolymers by free-radical polymerization. Macromolecules 31:1010–1015

    CAS  Google Scholar 

  43. Hertler WR (1991) vinylphosphonic esters as end-capping agents in group transfer polymerization. J Polym Sci A Polym Chem 29:869–873

    CAS  Google Scholar 

  44. Holstein SA, Cermak DM, Wiemer DF, Lewis K, Hohl RJ (1998) Phosphonate and bisphosphonate analogues of farnesyl pyrophosphate as potential inhibitors of farnesyl protein transferase. Bioorg Med Chem 6:687–694

    CAS  Google Scholar 

  45. Megati S, Phadtare S, Zemlicka J (1992) Unsaturated phosphonates as acyclic nucleotide analogs. Anomalous Michaelis-Arbuzov and Michaelis-Becker reactions with multiple bond systems. J Org Chem 57:2320–2327

    CAS  Google Scholar 

  46. Smeyers YG, Laguna AH, Romero-Sanchez FJ, Fernandez-Ibanez M, Galyez-Ruano E, Arias-Perez S (1987) Self-consistent field-molecular orbital (SCF-MO) calculations and nuclear magnetic resonance measurements for fosfomycin and related compounds. J Pharm Sci 76:753–756

    CAS  Google Scholar 

  47. Smith PW, Chamiec AJ, Chung G, Cobley KN, Duncan K, Howes PO, Whittington AR, Wood MR (1995) Synthesis and biological activity of novel cephalosporins containing a (Z)-vinyl dimethylphosphonate group. J Antibiot (Tokyo) 48:73–82

    CAS  Google Scholar 

  48. Bock T, Möhwald H, Mülhaupt R (2007) Arylphosphonic acid-functionalized polyelectrolytes as fuel cell membrane material. Macromol Chem Phys 208:1324–1340

    CAS  Google Scholar 

  49. Ogawa T, Usuki N, Ono N (1998) A new synthesis of π-electron conjugated phosphonates and phosphonic bis(diethylamides) and their SHG activities. J Chem Soc Perkin Trans 1:2953–2958

    Google Scholar 

  50. Zakeeruddin SM, Nazeeruddin MK, Pechy P, Rotzinger FP, Humphry-Baker R, Kalyanasundaram K, Grätzel M, Shklover V, Haibach T (1997) Molecular engineering of photosensitizers for nanocrystalline solar cells: synthesis and characterization of Ru dyes based on phosphonated terpyridines. Inorg Chem 36:5937–5946

    CAS  Google Scholar 

  51. Belfield KD, Chinna C, Schafer KJ (1997) New NLO stilbene derivatives bearing phosphonate ester electron-withdrawing groups. Tetrahedron Lett 38:6131–6134

    CAS  Google Scholar 

  52. Welch CM, Gonzales EJ, Guthrie JD (1961) Derivatives of unsaturated phosphonic acids. J Org Chem 26:3270–3273

    CAS  Google Scholar 

  53. Welch FJ, Paxton HJ (1965) Preparation and polymerization of addition compounds of unsaturated tertiary phosphine oxides. J Polym Sci Part A Gen Pap 3:3427–3437

    CAS  Google Scholar 

  54. Welch FJ, Paxton HJ (1965) Preparation and polymerization of propenyldiphenylphosphine oxide isomers. J Polym Sci Part A Gen Pap 3:3439–3449

    CAS  Google Scholar 

  55. Levchik SV, Weil ED (2005) Flame retardancy of thermoplastic polyesters-a review of the recent literature. Polym Int 54:11–35

    CAS  Google Scholar 

  56. Defieber C, Grützmacher H, Carreira EM (2008) Chiral olefins as steering ligands in asymmetric catalysis. Angew Chem Int Ed 47:4482–4502

    CAS  Google Scholar 

  57. Laporte C, Böhler C, Schönberg H, Grützmacher H (2002) Strain in organometallics: synthesis of rhodium and iridium complexes with a novel rigid tetrachelating phosphine olefin ligand and their redox properties. J Organomet Chem 641:227–234

    CAS  Google Scholar 

  58. Shi W, Luo Y, Luo X, Chao L, Zhang H, Wang J, Lei A (2008) Investigation of an efficient palladium-catalyzed C(sp)–C(sp) cross-coupling reaction using phosphine–olefin ligand: application and mechanistic aspects. J Am Chem Soc 130:14713–14720

    CAS  Google Scholar 

  59. Maire P, Deblon S, Breher F, Geier J, Böhler C, Rüegger H, Schönberg H, Grützmacher H (2004) Olefins as steering ligands for homogeneously catalyzed hydrogenations. Chem Eur J 10:4198–4205

    CAS  Google Scholar 

  60. Shintani R, Duan W-L, Okamoto K, Hayashi T (2005) Palladium/chiral phosphine–olefin complexes: X-ray crystallographic analysis and the use in catalytic asymmetric allylic alkylation. Tetrahedron Asym 16:3400–3405

    CAS  Google Scholar 

  61. Tayama O, Nakano A, Iwahama T, Sakaguchi S, Ishii Y (2004) Hydrophosphorylation of alkenes with dialkyl phosphites catalyzed by Mn(III) under air. J Org Chem 69:5494–5496

    CAS  Google Scholar 

  62. Beaufils F, Dénès F, Renaud P (2005) Dimethyl phosphite mediated hydrogen atom abstraction: a tin-free procedure for the preparation of cyclopentane derivatives. Angew Chem Int Ed 44:5273–5275

    CAS  Google Scholar 

  63. Gusarova NK, Sukhov BG, Malysheva SF, Kazantseva TI, Smetannikov YuV, Tarasova NP, Trofimov BA (2001) Reactions of elemental phosphorus and phosphines with electrophiles in superbasic systems: XIII. phosphorylation of phenylacetylene with active modifications of elemental phosphorus. Russ J Gen Chem 71:721–723

    CAS  Google Scholar 

  64. Malysheva SF, Sukhov BG, Larina LI, Belogorova NA, Gusarova NK, Trofimov BA (2001) Reaction of phenylacetylene with primary phosphines as a convenient way to nonsymmetric tertiary phosphines and their derivatives. Russ J Gen Chem 71:1907–1911

    CAS  Google Scholar 

  65. Preparation of vinyl organo-phosphorus compounds (1972), US Patent no 3673285. Chem Abstr (1972) 77, no 140290j

    Google Scholar 

  66. Han L-B, Tanaka M (1996) Palladium-catalyzed hydrophosphorylation of alkynes via oxidative addition of HP(O)(OR)2. J Am Chem Soc 118:1571–1572

    CAS  Google Scholar 

  67. Goulioukina NS, Dolgina TM, Beletskaya IP, Henry J-Ch, Lavergne D, Ratovelomanana-Vidal V, Genet J-P (2001) A practical synthetic approach to chiral α-aryl substituted ethylphosphonates. Tetrahedron Asym 12:319–327

    CAS  Google Scholar 

  68. Gulykina NS, Dolgina TM, Bondarenko GN, Beletskaya IP (2003) Hydrophosphorylation of terminal alkynes catalyzed by palladium. Russ J Org Chem 39:797–807

    CAS  Google Scholar 

  69. Gulyukina NS, Dolgina TM, Bondarenko GN, Beletskaya IP, Bondarenko NA, Henry JC, Lavergne D, Ratovelomanana-Vidal V, Genet J-P (2002) Synthesis of biologically active 1-arylethylphosphonates. Russ J Org Chem 38:573–587

    CAS  Google Scholar 

  70. Beletskaya IP, Goulioukina NS, Dolgina TM, Bondarenko GN, Bondarenko NA, Genet J-P (2001) Asymmetric hydrogenation of vinylphosphorus acids. Abstracts of Papers, XXth Int Chugaev Conf on Coordination Chemistry, Rostov-on-Don, 538

    Google Scholar 

  71. Allen A Jr, Manke DR, Lin W (2000) Synthesis of functional bisphosphonates via new palladium-catalyzed bis-hydrophosphorylation reactions. Tetrahedron Lett 41:151–154

    CAS  Google Scholar 

  72. Zhao Ch-Q, Han L-B, Goto M, Tanaka M (2001) Rhodium-catalyzed hydrophosphorylation of terminal alkynes leading to highly selective formation of (E)-alkenylphosphonates: complete reversal of regioselectivity to the palladium-catalyzed counterpart. Angew Chem Int Ed 40:1929–1932

    CAS  Google Scholar 

  73. Han L-B, Zhang C, Yazawa H, Shimada S (2004) Efficient and selective nickel-catalyzed addition of H–P(O) and H–S bonds to alkynes. J Am Chem Soc 126:5080–5081

    CAS  Google Scholar 

  74. Han L-B, Ono Y, Shimada S (2008) Palladium-catalyzed dehydrogenative cis double phosphorylation of alkynes with H-phosphonate leading to (Z)-bisphosphoryl-1-alkenes. J Am Chem Soc 130:2752–2753

    CAS  Google Scholar 

  75. Han L-B, Ono Y, Yazawa H (2005) Nickel-catalyzed addition of P(O)–H bonds to propargyl alcohols: one-pot generation of phosphinoyl 1,3-butadienes. Org Lett 7:2909–2911

    CAS  Google Scholar 

  76. Ananikov VP, Khemchyan LL, Beletskaya IP (2009) Celebrating 20 years of SYNLETT—special essay: general procedure for the palladium-catalyzed selective hydrophosphorylation of alkynes. Synlett 2375–2381

    Google Scholar 

  77. Han L-B, Mirzaei F, Ch-Q Zhao, Tanaka M (2000) High reactivity of a five-membered cyclic hydrogen phosphonate leading to development of facile palladium-catalyzed hydrophosphorylation of alkenes. J Am Chem Soc 122:5407–5408

    CAS  Google Scholar 

  78. Shulyupin MO, Franciò G, Beletskaya IP, Leitner W (2005) Regio- and enantioselective catalytic hydrophosphorylation of vinylarenes. Adv Synth Catal 347:667–672

    CAS  Google Scholar 

  79. Levine AM, Stockland RA, Clark R, Guzei I (2002) Direct observation of P(O)–C bond formation from (N⌢N)PdMe(P(O)(OPh)2) complexes. Rate enhancement of reductive elimination by addition of triarylphosphines. Organometallics 21:3278–3284

    CAS  Google Scholar 

  80. Barta K, Franciò G, Leitner W, Lloyd-Jones GC, Shepperson IR (2008) A new class of 3′-sulfonyl BINAPHOS ligands: modulation of activity and selectivity in asymmetric palladium-catalysed hydrophosphorylation of styrene. Adv Synth Catal 350:2013–2023

    CAS  Google Scholar 

  81. Xu Q, Han L-B (2006) Palladium-catalyzed asymmetric hydrophosphorylation of norbornenes. Org Lett 8:2099–2101

    CAS  Google Scholar 

  82. Reichwein JF, Patel MC, Pagenkopf BL (2001) Rhodium-catalyzed regioselective olefin hydrophosphorylation. Org Lett 3:4303–4306

    CAS  Google Scholar 

  83. Hirao T, Masunaga T, Yamada N, Ohshiro Y, Agawa T (1982) Palladium-catalyzed new carbon-phosphorus bond formation. Bull Chem Soc Jpn 55:909–913

    CAS  Google Scholar 

  84. Zhao Ch-Q, Han L-B, Tanaka M (2000) Palladium-catalyzed hydrophosphorylation of allenes leading to regio- and stereoselective formation of allylphosphonates. Organometallics 19:4196–4198

    Google Scholar 

  85. Mirzaei F, Han L-B, Tanaka M (2001) Palladium-catalyzed hydrophosphorylation of 1,3-dienes leading to allylphosphonates. Tetrahedron Lett 42:297–299

    CAS  Google Scholar 

  86. Han L-B, Choi N, Tanaka M (1996) Oxidative addition of HP(O)Ph2 to platinum(0) and palladium(0) complexes and palladium-catalyzed regio- and stereoselective hydrophosphinylation of alkynes. Organometallics 15:3259–3261

    CAS  Google Scholar 

  87. Han L-B, Hua R, Tanaka M (1998) Phosphinic acid induced reversal of regioselectivity in Pd-catalyzed hydrophosphinylation of alkynes with Ph2P(O)H. Angew Chem Int Ed 37:94–96

    CAS  Google Scholar 

  88. Han L-B, Zhao Ch-Q, Tanaka M (2001) Rhodium-catalyzed regio- and stereoselective addition of diphenylphosphine oxide to alkynes. J Org Chem 66:5929–5932

    CAS  Google Scholar 

  89. Hua R, Tanaka M (1998) Ruthenium-catalyzed addition reaction of diphenylphosphinic acid to terminal alkynes: regioselective synthesis of alkenyl diphenylphosphinates. Chem Lett 27:431–432

    Google Scholar 

  90. Duraud A, Toffano M, Fiaud J-C (2009) Regioselective metal-catalyzed hydrophosphinylation of alkynes: synthesis of enantiopure α-or β-substituted vinylphosphane oxides. Eur J Org Chem 4400–4403

    Google Scholar 

  91. Stockland RA Jr, Lipman AJ, Bawiec JA III, Morrison PE, Guzei IA, Findeis PM, Tamblin JF (2006) Remarkable tolerance of ethynyl steroids to air and water in microwave-assisted hydrophosphinylation: reaction scope and limitations. J Organomet Chem 691:4042–4053

    CAS  Google Scholar 

  92. Van Rooy S, Cao C, Patrick BO, Lam A, Love JA (2006) Alkyne hydrophosphinylation catalyzed by rhodium pyrazolylborate complexes. Inorg Chim Acta 359:2918–2923

    Google Scholar 

  93. Allen A Jr, Ma L, Lin W (2002) Facile synthesis of chelating bisphosphine oxides and bisphosphines via palladium-catalyzed bishydrophosphinylation reactions. Tetrahedron Lett 43:3707–3710

    CAS  Google Scholar 

  94. Stone JJ, Stockland RA Jr, Reyes JM Jr, Kovach J, Goodman CC, Tillman ES (2005) Microwave-assisted solventless single and double addition of HP(O)Ph2 to alkynes. J Mol Catal A 226:11–21

    CAS  Google Scholar 

  95. Mizuta T, Miyaji C, Katayama T, Ushio J, Kubo K, Miyoshi K (2009) Bi- and trinuclear complexes of group 4 metal and palladium bridged by OPPh2 groups: synthesis and high catalytic activities in double hydrophosphinylation of 1-octyne. Organometallics 28:539–546

    CAS  Google Scholar 

  96. Dobashi N, Fuse K, Hoshino T, Kanada J, Kashiwabara T, Kobata C, Nune SK, Tanaka M (2007) Palladium-complex-catalyzed regioselective Markovnikov addition reaction and dehydrogenative double phosphinylation to terminal alkynes with diphenylphosphine oxide. Tetrahedron Lett 48:4669–4673

    CAS  Google Scholar 

  97. Niu M, Fu H, Jiang Y, Zhao Y (2007) Copper-catalyzed addition of H-phosphine oxides to alkynes forming alkenylphosphine oxides. Chem Commun 272–274

    Google Scholar 

  98. Kanada J, Yamashita K, Nune SK, Tanaka M (2009) Pd-catalyzed addition–carbocyclization of α,ω-diynes with H–P(O)R2 compounds. Tetrahedron Lett 50:6196–6199

    CAS  Google Scholar 

  99. Deprèle S, Montchamp J-L (2002) Palladium-catalyzed hydrophosphinylation of alkenes and alkynes. J Am Chem Soc 124:9386–9387

    Google Scholar 

  100. Ribière P, Bravo-Altamirano K, Antczak MI, Hawkins JD, Montchamp J-L (2005) NiCl2-catalyzed hydrophosphinylation. J Org Chem 70:4064–4072

    Google Scholar 

  101. Deprèle S, Montchamp J-L (2004) Environmentally benign synthesis of H-phosphinic acids using a water-tolerant, recyclable polymer-supported catalyst. Org Lett 6:3805–3808

    Google Scholar 

  102. Bravo-Altamirano K, Abrunhosa-Thomas I, Montchamp J-L (2008) Palladium-catalyzed reactions of hypophosphorus compounds with allenes, dienes, and allylic electrophiles: methodology for the synthesis of allylic H-phosphinates. J Org Chem 73:2292–2301

    CAS  Google Scholar 

  103. Bravo-Altamirano K, Montchamp J-L (2007) A Novel approach to phosphonic acids from hypophosphorus acid. Tetrahedron Lett 48:5755–5759

    CAS  Google Scholar 

  104. Coudray L, Montchamp J-L (2008) Green, Palladium-catalyzed synthesis of benzylic H-phosphinates from hypophosphorous acid and benzylic alcohols. Eur J Org Chem 4101–4103

    Google Scholar 

  105. Han L-B, Zhao C-Q, Onozawa S-Y, Goto M, Tanaka M (2002) Retention of configuration on the oxidative addition of P–H bond to platinum (0) complexes: the first straightforward synthesis of enantiomerically pure P-chiral alkenylphosphinates via palladium-catalyzed stereospecific hydrophosphinylation of alkynes. J Am Chem Soc 124:3842–3843

    CAS  Google Scholar 

  106. Nune SK, Tanaka M (2007) Palladium-catalysed regioselective addition reaction of ethyl phenylphosphinate with terminal acetylenes: ligand- and solvent-dependent regioselectivity. Chem Commun 2858–2860

    Google Scholar 

  107. Wolfsberger W (1985) Chem-Ztg 109:317

    CAS  Google Scholar 

  108. Wolfsberger W (1988) Chem-Ztg 112:53

    CAS  Google Scholar 

  109. Wolfsberger W (1988) Chem-Ztg 112:215

    CAS  Google Scholar 

  110. Nagel U, Rieger B, Bublewitz A (1989) Enantioselektive katalyse: VII. Komplexe von (P(R,S),3R,4R,P′(R,S))-3,4-bis(phenylphosphino)pyrrolidinen. Die darstellung optisch reiner 1,2-bisphosphanliganden mit vier stereozentren, die zusätzliche funktionnelle gruppen enthalten. J Organomet Chem 370:223–239

    CAS  Google Scholar 

  111. Pringle PG, Smith MB (1990) Platinum(0)-catalysed hydrophosphination of acrylonitrile. J Chem Soc, Chem Commun 1701–1702

    Google Scholar 

  112. Costa E, Pringle PG, Smith MB, Worboys K (1997) Self-replication of Tris(cyanoethyl)phosphine catalysed by platinum group metal complexes. J Chem Soc Dalton Trans 4277–4282

    Google Scholar 

  113. Orpen AG, Pringle PG, Smith MB, Worboys K (1998) Synthesis and properties of new tris(cyanoethyl)phosphine complexes of platinum (0,II), palladium (0,II), iridium (I) and rhodium (I): conformational analysis of tris(cyanoethyl)phosphine ligands. J Organomet Chem 550:255–266

    CAS  Google Scholar 

  114. Pringle PG, Brewin D, Smith MB, Worboys K (1995) Aqueous organometallic chemistry and catalysis. In: Horvath IT, Joo F (eds) vol 5. Kluwer, Dordrecht, pp 111–122

    Google Scholar 

  115. Costa E, Pringle PG, Worboys K (1998) chemoselective platinum(0)-catalysed hydrophosphination of ethyl acrylate. Chem Commun 49–50

    Google Scholar 

  116. Rauhut MM, Currier HA, Semsel AM, Wystrach VP (1961) The free radical addition of phosphines to unsaturated compounds. J Org Chem 26:5138–5145

    CAS  Google Scholar 

  117. Wicht DK, Kourkine IV, Lew BM, Nthenge JM, Glueck DS (1997) Platinum-catalyzed acrylonitrile hydrophosphination via olefin insertion into a Pt–P bond. J Am Chem Soc 119:5039–5040

    CAS  Google Scholar 

  118. Wicht DK, Kourkine IV, Kovacik I, Glueck DS, Concolino TE, Yap GPA, Incarvito CD, Rheingold AL (1999) Platinum-catalyzed acrylonitrile hydrophosphination. P–C bond formation via olefin insertion into a Pt–P bond. Organometallics 18:5381–5394

    CAS  Google Scholar 

  119. Kovacik I, Wicht DK, Grewal NS, Glueck DS, Incarvito CD, Guzei IA, Rheingold AL (2000) Pt(Me-Duphos)-catalyzed asymmetric hydrophosphination of activated olefins: enantioselective synthesis of chiral phosphines. Organometallics 19:950–953

    CAS  Google Scholar 

  120. Kovacik I, Scriban C, Glueck DS (2006) Regiochemistry of platinum-catalyzed hydrophosphination of a diene. Formation of the chiral diphosphine Et2PCH(CN)CH(CH2CH2CN)PEt2 via monophosphine intermediates. Organometallics 25:536–539

    CAS  Google Scholar 

  121. Scriban C, Kovacik I, Glueck DS (2005) A Protic Additive suppresses formation of byproducts in platinum-catalyzed hydrophosphination of activated olefins. Evidence for P–C and C–C bond formation by Michael addition. Organometallics 24:4871–4874

    CAS  Google Scholar 

  122. Scriban C, Glueck DS, Zakharov LN, Kassel WS, DiPasquale AG, Golen JA, Rheingold AL (2006) P–C and C–C bond formation by Michael addition in platinum-catalyzed hydrophosphination and in the stoichiometric reactions of platinum phosphido complexes with activated alkenes. Organometallics 25:5757–5767

    CAS  Google Scholar 

  123. Scriban C, Glueck DS (2006) Platinum-catalyzed asymmetric alkylation of secondary phosphines: enantioselective synthesis of P-stereogenic phosphines. J Am Chem Soc 128:2788–2789

    CAS  Google Scholar 

  124. Blank NF, Moncarz JR, Brunker TJ, Scriban C, Anderson BJ, Amir O, Glueck DS, Zakharov LN, Golen JA, Incarvito CD, Rheingold AL (2007) Palladium-catalyzed asymmetric phosphination. scope, mechanism, and origin of enantioselectivity. J Am Chem Soc 129:6847–6858

    CAS  Google Scholar 

  125. Shulyupin MO, Kazankova MA, Beletskaya IP (2002) Catalytic hydrophosphination of styrenes. Org Lett 4:761–763

    CAS  Google Scholar 

  126. Nettekoven U, Hartwig JF (2002) A new pathway for hydroamination. mechanism of palladium-catalyzed addition of anilines to vinylarenes. J Am Chem Soc 124:1166–1167

    CAS  Google Scholar 

  127. Giardello M, King WA, Nolan SP, Porchia M, Sishta C, Marks TJ (1992) Energetics of organometallic species. In: Martinho Simoes JA (ed) Kluwer, Dordrecht, pp 35–51

    Google Scholar 

  128. Douglass MR, Marks TJ (2000) Organolanthanide-catalyzed intramolecular hydrophosphination/cyclization of phosphinoalkenes and phosphinoalkynes. J Am Chem Soc 122:1824–1825

    CAS  Google Scholar 

  129. Douglass MR, Stern ChL, Marks TJ (2001) Intramolecular hydrophosphination/cyclization of phosphinoalkenes and phosphinoalkynes catalyzed by organolanthanides: scope, selectivity, and mechanism. J Am Chem Soc 123:10221–10238

    CAS  Google Scholar 

  130. Douglass MR, Ogasawara M, Hong S, Metz MV, Marks TJ (2002) “Widening the Roof”: synthesis and characterization of new chiral c 1-symmetric octahydrofluorenyl organolanthanide catalysts and their implementation in the stereoselective cyclizations of aminoalkenes and phosphinoalkenes. Organometallics 21:283–292

    CAS  Google Scholar 

  131. Crimmin MR, Barrett AGM, Hill MS, Hitchcock PB, Procopiou PA (2007) Calcium-catalyzed intermolecular hydrophosphination. Organometallics 26:2953–2956

    CAS  Google Scholar 

  132. Sadow AD, Haller I, Fadini L, Togni A (2004) Nickel(II)-catalyzed highly enantioselective hydrophosphination of methacrylonitrile. J Am Chem Soc 126:14704–14705

    CAS  Google Scholar 

  133. Sadow AD, Togni A (2005) Enantioselective addition of secondary phosphines to methacrylonitrile: catalysis and mechanism. J Am Chem Soc 127:17012–17024

    CAS  Google Scholar 

  134. Kazankova MA, Efimova IV, Kochetkov AN, Afanas’ev VV, Beletskaya IP, Dixneuf PH (2001) New approach to vinylphosphines based on Pd- and Ni-catalyzed diphenylphosphine addition to alkynes. Synlett 497–500

    Google Scholar 

  135. Nagata S, Kawaguchi S-i, Matsumoto M, Kamiya I, Nomoto A, Sonoda M, Ogawa A (2007) A Highly regioselective hydrophosphination of terminal alkynes with tetraphenyldiphosphine in the presence of palladium catalyst. Tetrahedron Lett 48:6637–6640

    CAS  Google Scholar 

  136. Kawaguchi S-i, Kotani M, Ohe T, Nagata S, Nomoto A, Sonoda M, Ogawa A (2010) Rhodium-catalyzed anti-Markovnikov–type hydrophosphination of terminal alkynes with diphosphines and hydrosilanes in the presence of oxygen. Phosphorus, Sulfur, Silicon 185:1090–1097

    CAS  Google Scholar 

  137. Takaki K, Takeda M, Koshoji G, Shishido T, Takehira K (2001) Intermolecular hydrophosphination of alkynes and related carbon—carbon multiple bonds catalyzed by ytterbium–imine complexes. Tetrahedron Lett 42:6357–6360

    CAS  Google Scholar 

  138. Takaki K, Koshoji G, Komeyama K, Takeda M, Shishido T, Kitani A, Takehira K (2003) Intermolecular hydrophosphination of alkynes and related carbon–carbon multiple bonds catalyzed by organoytterbiums. J Org Chem 68:6554–6565

    CAS  Google Scholar 

  139. Join B, Mimeau D, Delacroix O, Gaumont A-C (2006) Pallado-catalysed hydrophosphination of alkynes: access to enantio-enriched P-stereogenic vinyl phosphine–boranes. Chem Commun 3249–3251

    Google Scholar 

  140. Mimeau D, Gaumont A-C (2003) Regio- and Stereoselective hydrophosphination reactions of alkynes with phosphine–boranes: access to stereodefined vinylphosphine derivatives. J Org Chem 68:7016–7022

    CAS  Google Scholar 

  141. Mimeau D, Delacroix O, Gaumont A-C (2003) Regioselective uncatalysed hydrophosphination of alkenes: a facile route to P-alkylated phosphine derivatives. Chem Commun 2928–2929

    Google Scholar 

  142. Pullarkat SA, Yi D, Li Y, Tan G-K, Leung P-H (2006) A novel approach toward asymmetric synthesis of alcohol functionalized C-chiral diphosphines via two-stage hydrophosphination of terminal alkynols. Inorg Chem 45:7455–7463

    CAS  Google Scholar 

  143. Jérôme F, Monnier F, Lawicka H, Dérien S, Dixneuf PH (2003) Ruthenium catalyzed regioselective hydrophosphination of propargyl alcohols. Chem Commun 696–697

    Google Scholar 

  144. Kondoh A, Yorimitsu H, Oshima K (2007) Copper-catalyzed anti-hydrophosphination reaction of 1-alkynylphosphines with diphenylphosphine providing (Z)-1,2-diphosphino-1-alkenes. J Am Chem Soc 129:4099–4104

    CAS  Google Scholar 

  145. Ohmiya H, Yorimitsu H, Oshima K (2005) Cobalt-catalyzed syn hydrophosphination of alkynes. Angew Chem Int Ed 44:2368–2370

    CAS  Google Scholar 

  146. Patel DV, Rielly-Gauvin K, Ryono DE (1990) Preparation of peptidic α-hydroxy phosphonates a new class of transition state analog renin inhibitors. Tetrahedron Lett 31:5587–5590

    CAS  Google Scholar 

  147. Patel DV, Rielly-Gauvin K, Ryono DE (1990) Peptidic α-hydroxy phosphinyls C-terminal modification methodology. Tetrahedron Lett 31:5591–5594

    CAS  Google Scholar 

  148. Sikorski JA, Miller MJ, Braccolino DS, Cleary DG, Corey SD, Font JL, Gruys KJ, Han CY, Lin KC, Pansegrau PD, Ream JE, Schnur D, Shah A, Walker MC (1993) EPSP Synthase: the design and synthesis of bisubstrate inhibitors incorporating novel 3-phosphate mimics. Phosphorus, Sulfur, Silicon Relat Elem 76:115–118

    Google Scholar 

  149. Stowasser B, Budt K-H, Jian-Qi L, Peyman A, Ruppert D (1992) New hybrid transition state analog inhibitors of HIV protease with peripheric C2-symmetry. Tetrahedron Lett 33:6625–6628

    CAS  Google Scholar 

  150. Moore ML, Dreyer GB (1993) Substrate-based inhibitors of HIV-1 protease. Perspect Drug Discovery Des 1:85–108

    CAS  Google Scholar 

  151. Hammerschmidt F, Vollenkle H (1989) Justus Liebigs Ann Chem 577

    Google Scholar 

  152. Yokomatsu T, Shibuya S (1992) Enantioselective synthesis of α-amino phosphonic acids by an application of stereoselective opening of homochiral dioxane acetals with triethyl phosphite. Tetrahedron Asym 3:377–378

    CAS  Google Scholar 

  153. Baraldi PG, Guarneri M, Moroder F, Pollini GP, Simoni D (1982) Synthesis of 1-phthalimidoalkanephosphonates. Synthesis 653–655

    Google Scholar 

  154. Maier L (1993) Aminooxyalkylphosphonic acids and derivatives. Phosphorus, Sulfur, Silicon Relat Elem 76:119–122

    Google Scholar 

  155. Öhler E, Kotzinger S (1993) Thermal rearrangement of trichloroacetimidic esters of allylic α-hydroxyphosphonates: a convenient way to (3-amino-1-alkenyl)phosphonic acids. Synthesis 497–502

    Google Scholar 

  156. Kafarski P, Lejczak B (1991) Biological activity of aminophosphonic acids. Phosphorus, Sulfur, Silicon Relat Elem 63:193–215

    CAS  Google Scholar 

  157. Kametani T, Kigasawa K, Hiiragi M, Wakisaka K, Haga S, Sugi H, Tanigawa K, Suzuki Y, Fukawa K, Irino O, Saita O, Yamabe S (1981) Studies on the synthesis of chemotherpeutics. Part XI. Synthesis and antibacterial activities of phosphonopeptides. Heterocycles 16:1205–1242

    CAS  Google Scholar 

  158. Atherton FR, Halli MJ, Hassall CH, Lambert RW, Ringrose PS (1979) Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Antimicrob Agents Chemother 15:696–705

    CAS  Google Scholar 

  159. Allen JG, Atherton FR, Hall MJ, Hassall CH, Holmes SW, Lambert RW, Nisbet LJ, Ringrose PS (1979) Phosphonopeptides as antibacterial agents: alaphosphin and related phosphonopeptides. Antimicrob Agents Chemother 15:684–695

    CAS  Google Scholar 

  160. Gordon NJ, Evans SA Jr (1993) Studies on the base-promoted enantioselective aldol reaction between an (S,S)-2-oxo-2-propionyl-1,3,2-oxazaphosphorinane and benzaldehyde. Phosphorus, Sulfur, Silicon Relat Elem 75:47–50

    CAS  Google Scholar 

  161. Li YF, Hammerschmidt F (1993) Enzymes in Organic Chemistry, part 1: enantioselective hydrolysis of α-(acyloxy)phosphonates by esterolytic enzymes. Tetrahedron Asym 4:109–120

    CAS  Google Scholar 

  162. Wynberg H, Smaardijk AA (1983) asymmetric catalysis in carbon–phosphorus bond formation. Tetrahedron Lett 24:5899–5900

    CAS  Google Scholar 

  163. Sum V, Davies AJ, Kee TP (1992) New, chiral silylated organophosphorus(III) reagents: syntheses and applications in the asymmetric phosphorylation of aldehydes. J Chem Soc, Chem Commun 1771–1773

    Google Scholar 

  164. Jacques J, Leclercq M, Brienne MJ (1981) La Formation de Sels Augmente-t-elle la Fréquence des Dédoublements Spontanés? Tetrahedron 37:1727–1733

    CAS  Google Scholar 

  165. Heisler A, Rabiller C, Douillard R, Goalou N, Hägele G, Levayer F (1993) Enzyme catalysed resolution of aminophosphonic acids-I—serine and isoserine analogues. Tetrahedron Asym 4:959–960

    CAS  Google Scholar 

  166. Hoffmann M (1990) Optically active 1-hydroxy-3-methylbutanephosphonic acid and its derivatives. J Prakt Chem 251–255

    Google Scholar 

  167. Gordon NJ, Evans SA Jr (1993) Diastereoselective condensation of oxazaphosphites with aliphatic and aromatic aldehydes. J Org Chem 58:5293–5294

    CAS  Google Scholar 

  168. Gajda T (1994) Enantioselective synthesis of diethyl 1-hydroxyalkylphosphonates via oxazaborolidine catalyzed borane reduction of diethyl α-ketophosphonates. Tetrahedron Asym 5:1965–1972

    CAS  Google Scholar 

  169. Blazis VJ, Koeller KJ, Spilling CD (1995) Reactions of chiral phosphorus acid diamides: the asymmetric synthesis of chiral alpha-hydroxy phosphonamides, phosphonates, and phosphonic acids. J Org Chem 60:931–940

    CAS  Google Scholar 

  170. Yokomatsu T, Yamagishi T, Shibuya S (1995) Stereoselective synthesis of γ,δ-unsaturated α-hydroxyphosphonates through [2,3]-Wittig sigmatropic rearrangement of α-allyloxyphosphonates. Synlett 1035–1036

    Google Scholar 

  171. Yokomatsu T, Yamagishi T, Shibuya S (1993) Stereodivergent synthesis of β-amino-α-hydroxyphosphonic acid derivatives by Lewis acid mediated stereoselective hydrophosphonylation of α-amino aldehydes. Tetrahedron Asym 4:1401–1404

    CAS  Google Scholar 

  172. Arai T, Sasai H, Aoe K, Okamura K, Date T, Shibasaki M (1996) A new multifunctional heterobimetallic asymmetric catalyst for Michael additions and tandem Michael–aldol reactions. Angew Chem Int Ed 35:104–106

    CAS  Google Scholar 

  173. Yokomatsu T, Yamagishi T, Matsumoto K, Shibuya S (1996) Stereocontrolled synthesis of hydroxymethylene phosphonate analogues of phosphorylated tyrosine and their conversion to monofluoromethylene phosphonate analogues. Tetrahedron 52:11725–11738

    CAS  Google Scholar 

  174. Groaning MD, Rowe BJ, Spilling CD (1998) New homochiral cyclic diol ligands for titanium alkoxide catalyzed phosphonylation of aldehydes. Tetrahedron Lett 39:5485–5488

    CAS  Google Scholar 

  175. Davies SR, Mitchell MC, Cain CP, Devitt PG, Taylor RJ, Kee TP (1998) Phospho-transfer catalysis: on the asymmetric hydrophosphonylation of aldehydes. J Organomet Chem 550:29–57

    CAS  Google Scholar 

  176. Duxbury JP, Cawley A, Thornton-Pett M, Wantz L, Warne JND, Greatrex R, Brown D, Kee TP (1999) Chiral aluminium complexes as phospho-transfer catalysts. Tetrahedron Lett 40:4403–4406

    CAS  Google Scholar 

  177. Ward CV, Jiang M, Kee TP (2000) New chiral catalysts for phospho-transfer. Tetrahedron Lett 41:6181–6184

    CAS  Google Scholar 

  178. Yokomatsu T, Yamagishi T, Shibuya S (1997) Enantioselective synthesis of α-hydroxyphosphonates through asymmetric Pudovik reactions with chiral lanthanoid and titaniumalkoxides. J Chem Soc Perkin Trans 1:1527–1534

    Google Scholar 

  179. Qian C, Huang T, Zhu C, Sun J (1998) Synthesis of 3,3′-,6,6′- and 3,3′,6,6′-substituted binaphthols and their application in the asymmetric hydrophosphonylation of aldehydes—an obvious effect of substituents of BINOL on the enantioselectivity. J Chem Soc Perkin Trans 1:2097–2104

    Google Scholar 

  180. Arai T, Bougauchi M, Sasai H, Shibasaki M (1996) Catalytic asymmetric synthesis of α-hydroxy phosphonates using the Al–Li-BINOL complex. J Org Chem 61:2926–2927

    CAS  Google Scholar 

  181. Shibasaki M, Sasai H, Arai T (1997) Asymmetric catalysis with heterobimetallic compounds. Angew Chem Int Ed 36:1236–1256

    Google Scholar 

  182. Rath NP, Spilling CD (1994) The enantioselective addition of dialkylphosphites to aldehydes: catalysis by a lanthanum binaphthoxide complex. Tetrahedron Lett 35:227–230

    CAS  Google Scholar 

  183. Sasai H, Bougauchi M, Arai T, Shibasaki M (1997) Enantioselective synthesis of α-hydroxy phosphonates using the LaLi3tris(binaphthoxide) catalyst (LLB), prepared by an improved method. Tetrahedron Lett 38:2717–2720

    CAS  Google Scholar 

  184. Gröger H, Hammer B (2000) Catalytic concepts for the enantioselective synthesis of α-amino and α-hydroxy phosphonates. Chem Eur J 6:943–948

    Google Scholar 

  185. Saito B, Katsuki T (2005) Synthesis of an optically active C 1-symmetric Al(salalen) complex and its application to the catalytic hydrophosphonylation of aldehydes. Angew Chem Int Ed 44:4600–4602

    Google Scholar 

  186. Saito B, Egami H, Katsuki T (2007) Synthesis of an optically active Al(salalen) complex and its application to catalytic hydrophosphonylation of aldehydes and aldimines. J Am Chem Soc 129:1978–1986

    CAS  Google Scholar 

  187. Ito K, Tsutsumi H, Setoyama M, Saito B, Katsuki T (2007) Enantioselective hydrophosphonylation of aldehydes using an aluminum binaphthyl Schiff base complex as a catalyst. Synlett 1960–1962

    Google Scholar 

  188. Zhou X, Liu X, Yang X, Shang D, Xin J, Feng X (2008) Highly enantioselective hydrophosphonylation of aldehydes catalyzed by tridentate Schiff base aluminum(III) complexes. Angew Chem Int Ed 47:392–394

    CAS  Google Scholar 

  189. Gou S, Zhou X, Wang J, Liu X, Feng X (2008) Asymmetric hydrophosphonylation of aldehydes catalyzed by bifunctional chiral Al(III) Complexes. Tetrahedron 64:2864–2870

    CAS  Google Scholar 

  190. Zhou X, Liu Y, Chang L, Zhao J, Shang D, Liu X, Lin L, Feng X (2009) Highly efficient synthesis of quaternary α-hydroxy phosphonates via Lewis acid-catalyzed hydrophosphonylation of ketones. Adv Synth Catal 351:2567–2572

    CAS  Google Scholar 

  191. Yamagishi T, Yokomatsu T, Suemune K, Shibuya S (1999) Enantioselective synthesis of α-hydroxyphosphinic acid derivatives through hydrophosphinylation of aldehydes catalyzed by Al–Li-BINOL complex. Tetrahedron 55:12125–12136

    CAS  Google Scholar 

  192. Yamagishi T, Suemune K, Yokomatsu T, Shibuya S (2002) Asymmetric synthesis of β-amino-α-hydroxyphosphinic acid derivatives through hydrophosphinylation of α-amino aldehydes. Tetrahedron 58:2577–2583

    CAS  Google Scholar 

  193. Sasai H, Arai S, Tahara Y, Shibasaki M (1995) Catalytic asymmetric synthesis of alpha-amino phosphonates using lanthanoid-potassium-BINOL complexes. J Org Chem 60:6656–6657

    CAS  Google Scholar 

  194. European Patent no 877 028 (1998)

    Google Scholar 

  195. Gröger H, Saida Y, Sasai H, Yamaguchi K, Martens J, Shibasaki M (1998) A new and highly efficient asymmetric route to cyclic α-amino phosphonates: the first catalytic enantioselective hydrophosphonylation of cyclic imines catalyzed by chiral heterobimetallic lanthanoid complexes. J Am Chem Soc 120:3089–3103

    Google Scholar 

  196. Han W, Ofial AR (2009) Iron-catalyzed dehydrogenative phosphonation of N,N-dimethylanilines. Chem Commun 6023–6025

    Google Scholar 

  197. Baslé O, Li C-J (2009) Copper-catalyzed aerobic phosphonation of sp3C–H bonds. Chem Commun 4124–4126

    Google Scholar 

  198. Yamakoshi K, Harwood SJ, Kanai M, Shibasaki M (1999) Catalytic asymmetric addition of diphenylphosphine oxide to cyclic imines. Tetrahedron Lett 40:2565–2568

    CAS  Google Scholar 

  199. Hoye PAT, Pringle PG, Smith MB, Worboys K (1993) Hydrophosphination of formaldehyde catalysed by tris-(hydroxymethyl)phosphine complexes of platinum, palladium or nickel. J Chem Soc Dalton Trans 269–274

    Google Scholar 

  200. Ellis JW, Harrison KN, Hoye PAT, Orpen AG, Pringle PG, Smith MB (1992) Water-soluble tris(hydroxymethyl)phosphine complexes with nickel, palladium, and platinum. Crystal structure of [Pd{P(CH2OH)3}4]CH3OH. Inorg Chem 31:3026–3033

    CAS  Google Scholar 

  201. Harrison KN, Hoye PAT, Orpen AG, Pringle PG, Smith MB (1989) Water soluble, zero-valent, platinum–, palladium–, and nickel–P(CH2OH)3 complexes: catalysts for the addition of PH3 to CH2O. J Chem Soc Chem Commun 1096–1097

    Google Scholar 

  202. Bourumeau K, Gaumont A-C, Denis J-M (1997) P–H bond activation of primary phosphine-boranes: access to α-hydroxy and α,α′-dihydroxyphosphine-borane adducts by uncatalyzed hydrophosphination of carbonyl derivatives. J Organomet Chem 529:205–213

    CAS  Google Scholar 

  203. Bar-Nir BB-A, Portnoy M (2000) Addition of borane-protected secondary phosphines to imines. A route to protected mono-N-substituted-α-aminophosphines. Tetrahedron Lett 41:6143–6147

    CAS  Google Scholar 

  204. Hashimoto T, Maeta H, Matsumoto T, Morooka M, Ohba S, Suzuki K (1992) Synthesis of 1,3-Bis(diphenylphosphinoyl)alkanes via double addition of diphenylphosphine to α,β-unsaturated carbonyl compounds: sequential 1,4- and 1,2-addition promoted by NbCl5-BF3·OEt2. Synlett 340–342

    Google Scholar 

  205. Carlone A, Bartoli G, Bosco M, Sambri L, Melchiorre P (2007) Organocatalytic asymmetric hydrophosphination of α,β-unsaturated aldehydes. Angew Chem Int Ed 46:4504–4506

    CAS  Google Scholar 

  206. Joly GD, Jacobsen EN (2004) Thiourea-catalyzed enantioselective hydrophosphonylation of imines: practical access to enantiomerically enriched α-amino phosphonic acids. J Am Chem Soc 126:4102–4103

    CAS  Google Scholar 

  207. Akiyama T, Morita H, Itoh J, Fuchibe K (2005) Chiral Brønsted acid catalyzed enantioselective hydrophosphonylation of imines:asymmetric synthesis of α-amino phosphonates. Org Lett 7:2583–2585

    CAS  Google Scholar 

  208. Pettersen D, Marcolini M, Bernardi L, Fini F, Herrera RP, Sgarzani V, Ricci A (2006) Direct access to enantiomerically enriched α-amino phosphonic acid derivatives by organocatalytic asymmetric hydrophosphonylation of imines. J Org Chem 71:6269–6272

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Beletskaya, I.P., Ananikov, V.P., Khemchyan, L.L. (2011). Synthesis of Phosphorus Compounds via Metal-Catalyzed Addition of P–H Bond to Unsaturated Organic Molecules. In: Peruzzini, M., Gonsalvi, L. (eds) Phosphorus Compounds. Catalysis by Metal Complexes, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3817-3_8

Download citation

Publish with us

Policies and ethics