Metal Phosphorus Complexes as Antitumor Agents

  • Alexey A. Nazarov
  • Paul J. Dyson
Part of the Catalysis by Metal Complexes book series (CMCO, volume 37)


Phosphorus-based ligands are an extremely important class of ligand and they have found many applications, especially in homogeneous catalysis. In addition, a phosphine ligand is found in a gold drug used to treat rheumatoid arthritis. Since metal compounds are also widely used to treat cancer many studies on the anticancer activity of metal–phosphine complexes have been conducted. In this chapter we describe recent highlights in the field, centered on platinum, ruthenium and gold complexes. From this overview it is clear that phosphorus-based ligands offer a number of important advantages compared to other types of ligands. It also becomes clear that studies are in a comparatively early stage and that more attention should be directed towards the design and synthesis of phosphine and other phosphorus ligands for medicinal applications in metal-based chemotherapeutics. Examples of metal–phosphine compounds that target critical enzymes in cancer indicates that these compounds operate via mechanisms quite distinct from other metal-based drugs which damage DNA, and consequently, facilitates rational drug design.


Ruthenium Complex Platinum Complex Ethacrynic Acid Phosphine Ligand Gold Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding from the Swiss National Science Foundation and the European Commission Marie Curie Action CT-220890-SuRuCo and stimulating discussions with members of PhoSciNet are gratefully acknowledged.


  1. 1.
    Yudelevich VI, Komarov EV, Ionin BI (1985) Organophosphorus drugs. Khim Farm Zh 19:668–685Google Scholar
  2. 2.
    Ludeman SM (1999) The chemistry of the metabolites of cyclophosphamide. Curr Pharm Des 5:627–643Google Scholar
  3. 3.
    Wardle NJ, Bligh SWA, Hudson HR (2005) Organophosphorus chemistry: therapeutic intervention in mechanisms of viral and cellular replication. Curr Org Chem 9:1803–1828CrossRefGoogle Scholar
  4. 4.
    Hande KR (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521CrossRefGoogle Scholar
  5. 5.
    van Maanen MJ, Smeets CJM, Beijnen JH (2000) Chemistry, pharmacology and pharmacokinetics of N,N′,N″-triethylenethiophosphoramide (thioTEPA). Cancer Treat Rev 26:257–268CrossRefGoogle Scholar
  6. 6.
    Lippert B (1999) Cisplatin Chemistry and biochemistry of a leading anticancer drug. VHCA, ZürichCrossRefGoogle Scholar
  7. 7.
    Dyson PJ, Sava G (2006) Metal-based antitumour drugs in the post genomic era. Dalton Trans 1929–1933Google Scholar
  8. 8.
    Jakupec MA, Galanski M, Arion VB et al (2008) Antitumor metal compounds: more than theme and variations. Dalton Trans 183–194Google Scholar
  9. 9.
    Galanski M, Jakupec MA, Keppler BK (2005) Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem 12:2075–2094CrossRefGoogle Scholar
  10. 10.
    Jakupec MA, Galanski M, Slaby S et al (2002) Structure-activity relationships of platinum(II) phosphonate compounds for the treatment of bone malignancies. Eur J Cancer 38:82CrossRefGoogle Scholar
  11. 11.
    Shaw CF III (1999) Gold-based therapeutic agents. Chem Rev 99:2589–2600CrossRefGoogle Scholar
  12. 12.
    Berners-Price SJ, Sadler PJ (1988) Phosphines and metal phosphine complexes: relationship of chemistry to anticancer and other biological activity In: Structure and Bonding. Springer, BerlinGoogle Scholar
  13. 13.
    Kozelka J, Segal E, Bois C (1992) Cytotoxic activity of platinum (II) complexes with tri-n-butylphosphine. Crystal structure of the dinuclear hydrazine-bridged complex, cis,cis-[PtCl(PBu3n)2(μ-N2H4)PtCl(PBu3n] (ClO4)2*2CHCl3. J Inorg Biochem 47:67–80CrossRefGoogle Scholar
  14. 14.
    Cleare MJ, Hoeschele JD (1973) Antitumor activity of group VIII transition metal complexes. I. Platinum(II) complexes. Bioinorg Chem 2:187–210CrossRefGoogle Scholar
  15. 15.
    Khokhar AR, Xu Q, Siddik ZH (1990) Synthesis, characterization, and antitumor activity of 1,2-bis(diphenylphosphino) ethane platinum(II) and palladium(II) complexes. J Inorg Biochem 39:117–123CrossRefGoogle Scholar
  16. 16.
    Phillips AD, Gonsalvi L, Romerosa A et al (2004) Coordination chemistry of 1,3,5-triaza-7-phosphaadamantane (PTA): transition metal complexes and related catalytic, medicinal and photoluminescent applications. Coord Chem Rev 248:955–993CrossRefGoogle Scholar
  17. 17.
    Bergamini P, Bertolasi V, Marvelli L et al (2007) Phosphinic platinum complexes with 8-thiotheophylline derivatives: synthesis, characterization, and antiproliferative activity. Inorg Chem 46:4267–4276CrossRefGoogle Scholar
  18. 18.
    Dolfen D, Schottler K, Valiahdi S-M et al (2008) Synthesis, structures and in vitro cytotoxicity of some platinum(II) complexes containing thiocarbamate esters. J Inorg Biochem 102:2067–2071CrossRefGoogle Scholar
  19. 19.
    Romerosa A, Bergamini P, Bertolasi V et al (2004) Biologically active platinum complexes containing 8-Thiotheophylline and 8-(Methylthio)theophylline. Inorg Chem 43:905–913CrossRefGoogle Scholar
  20. 20.
    Miranda S, Vergara E, Mohr F et al (2008) Synthesis, characterization, and in vitro cytotoxicity of some gold(I) and trans platinum(II) thionate complexes containing water-soluble PTA and DAPTA ligands. X-ray crystal structures of [Au(SC4H3N2)(PTA)], trans-[Pt(SC4H3N2)2(PTA)2], trans-[Pt(SC5HN)2(PTA)2], and trans-[Pt(SC5H4 N)2(DAPTA)2]. Inorg Chem 47:5641–5648CrossRefGoogle Scholar
  21. 21.
    Habtemariam A, Watchman B, Potter BS et al (2001) Control of aminophosphine chelate ring-opening in Pt(II) and Pd(II) complexes: potential dual-mode anticancer agents. Dalton Trans 1306–1318Google Scholar
  22. 22.
    Ramos-Lima Francisco J, Quiroga AG, Garcia-Serrelde B et al (2007) New trans-platinum drugs with phosphines and amines as carrier ligands induce apoptosis in tumor cells resistant to cisplatin. J Med Chem 50:2194–2199CrossRefGoogle Scholar
  23. 23.
    Hollis LS, Miller AV, Amundsen AR et al (1990) Cis-diamineplatinum (II) complexes containing phosphono carboxylate ligands as antitumor agents. J Med Chem 33:105–111CrossRefGoogle Scholar
  24. 24.
    Margiotta N, Ostuni R, Gandin V et al (2009) Synthesis, characterization, and cytotoxicity of dinuclear platinum-bisphosphonate complexes to be used as prodrugs in the local treatment of bone tumours. Dalton Trans 10904–10913Google Scholar
  25. 25.
    Fleisch H (2000) Bisphosphonates in bone disease: from the laboratory to the patient. Academic Press, San DiegoGoogle Scholar
  26. 26.
    Bloemink MJ, Diederen JJH, Dorenbos JP et al (1999) Calcium ions do accelerate the DNA binding of new antitumor-active platinum aminophosphonate complexes. Eur J Inorg Chem 1655–1657Google Scholar
  27. 27.
    Galanski M, Slaby S, Jakupec MA et al (2003) Synthesis, characterization, and in vitro antitumor activity of osteotropic diam(m)ineplatinum(II) complexes bearing a N,N-bis(phosphonomethyl)glycine ligand. J Med Chem 46:4946–4951CrossRefGoogle Scholar
  28. 28.
    Klenner T, Valenzuela-Paz P, Keppler BK et al (1990) Cisplatin-linked phosphonates in the treatment of the transplantable osteosarcoma in vitro and in vivo. Cancer Treat Rev 17:253–259CrossRefGoogle Scholar
  29. 29.
    Hartinger CG, Dyson PJ (2009) Bioorganometallic chemistry-from teaching paradigms to medicinal applications. Chem Soc Rev 38:391–401CrossRefGoogle Scholar
  30. 30.
    Leyva L, Sirlin C, Rubio L et al (2007) Synthesis of cycloruthenated compounds as potential anticancer agents. Eur J Inorg Chem 3055–3066Google Scholar
  31. 31.
    van Rijn Jimmy A, Marques-Gallego P, Reedijk J et al (2009) A novel ruthenium(III) complex with a tridentate dianionic P,O,O-ligand showing high cytotoxic activity. Dalton Trans 10727–10730Google Scholar
  32. 32.
    Allardyce CS, Dyson PJ, Ellis DJ et al (2001) Ru(η6-p-cymene)Cl2(pta) (pta = 1,3,5-triaza-7-phosphatricyclo decane): a water soluble compound that exhibits pH dependent DNA binding providing selectivity for diseased cells. Chem Commun 1396–1397Google Scholar
  33. 33.
    Scolaro C, Bergamo A, Brescacin L et al (2005) In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J Med Chem 48:4161–4171CrossRefGoogle Scholar
  34. 34.
    Scolaro C, Geldbach TJ, Rochat S et al (2006) Influence of hydrogen-bonding substituents on the cytotoxicity of RAPTA compounds. Organometallics 25:756–765CrossRefGoogle Scholar
  35. 35.
    Renfrew AK, Phillips AD, Tapavicza E et al (2009) Tuning the efficacy of ruthenium(II)-arene (RAPTA) antitumor compounds with fluorinated arene ligands. Organometallics 28:5061–5071CrossRefGoogle Scholar
  36. 36.
    Serli B, Zangrando E, Gianferrara T et al (2005) Is the aromatic fragment of piano-stool ruthenium compounds an essential feature for anticancer activity? The development of New RuII-[9]aneS3 analogues. Eur J Inorg Chem 3423–3434Google Scholar
  37. 37.
    Ang WH, Daldini E, Scolaro C et al (2006) Development of organometallic ruthenium-arene anticancer drugs that resist hydrolysis. Inorg Chem 45:9006–9013CrossRefGoogle Scholar
  38. 38.
    Casini A, Gabbiani C, Sorrentino F et al (2008) Emerging protein targets for anticancer metallodrugs: inhibition of thioredoxin reductase and cathepsin B by antitumor ruthenium(II)-arene compounds. J Med Chem 51:6773–6781CrossRefGoogle Scholar
  39. 39.
    Ang Wee H, Parker Lorien J, De Luca A et al (2009) Rational design of an organometallic glutathione transferase inhibitor. Angew Chem Int Ed 48:3854–3857CrossRefGoogle Scholar
  40. 40.
    Romerosa A, Campos-Malpartida T, Lidrissi C et al (2006) Synthesis, characterization, and DNA binding of new water-soluble cyclopentadienyl Ruthenium(II) complexes incorporating phosphines. Inorg Chem 45:1289–1298CrossRefGoogle Scholar
  41. 41.
    Scolaro C, Chaplin AB, Hartinger CG et al (2007) Tuning the hydrophobicity of ruthenium(II)-arene (RAPTA) drugs to modify uptake, biomolecular interactions and efficacy. Dalton Trans 5065–5072Google Scholar
  42. 42.
    Renfrew AK, Scopelliti R, Dyson PJ (2010) Use of perfluorinated phosphines to provide thermomorphic anticancer complexes for heat-based tumor targeting. Inorg Chem 49:2239–2246CrossRefGoogle Scholar
  43. 43.
    Berger I, Hanif M, Nazarov AA et al (2008) In vitro anticancer activity and biologically relevant metabolization of organometallic ruthenium complexes with carbohydrate-based ligands. Chem Eur J 14:9046–9047CrossRefGoogle Scholar
  44. 44.
    Hanif M, Nazarov AA, Hartinger CG et al (2010) Osmium(II)– versus ruthenium(II)–arene carbohydratebased anticancer compounds: similarities and differences. Dalton Trans 39:7345–7352CrossRefGoogle Scholar
  45. 45.
    Mirabelli CK, Hill DT, Faucette LF et al (1987) Antitumor activity of bis(diphenylphosphino)alkanes, their gold(I) coordination complexes, and related compounds. J Med Chem 30:2181–2190CrossRefGoogle Scholar
  46. 46.
    Berners-Price SJ, Bowen RJ, Galettis P et al (1999) Structural and solution chemistry of gold(I) and silver(I) complexes of bidentate pyridyl phosphines: selective antitumour agents. Coord Chem Rev 185–186:823–836CrossRefGoogle Scholar
  47. 47.
    Barnard PJ, Berners-Price SJ (2007) Targeting the mitochondrial cell death pathway with gold compounds. Coord Chem Rev 251:1889–1902CrossRefGoogle Scholar
  48. 48.
    Schuh E, Valiahdi SM, Jakupec MA et al (2009) Synthesis and biological studies of some gold(I) complexes containing functionalised alkynes. Dalton Trans 10841–10845Google Scholar
  49. 49.
    Suresh D, Balakrishna MS, Rathinasamy K et al (2008) Large-bite bis(phosphite) ligand containing mesocyclic thioether moieties: synthesis, reactivity, group 11 (Cu-I, Au-I) metal complexes and anticancer activity studies on a human cervical cancer (HeLa) cell line. Dalton Trans 2285–2292Google Scholar
  50. 50.
    Barreiro E, Casas JS, Couce MD et al (2010) Dinuclear triphenylphosphinegold(I) sulfanylcarboxylates: synthesis, structure and cytotoxic activity against cancer cell lines. J Inorg Biochem 104:551–559CrossRefGoogle Scholar
  51. 51.
    Bagowski CP, You Y, Scheffler H et al (2009) Naphthalimide gold(I) phosphine complexes as anticancer metallodrugs. Dalton Trans 10799–10805Google Scholar
  52. 52.
    Vergara E, Casini A, Sorrentino F et al (2010) Anticancer therapeutics that target selenoenzymes: synthesis, characterization, in vitro cytotoxicity, and thioredoxin reductase inhibition of a series of gold(I) complexes containing hydrophilic phosphine ligands. Chem Med Chem 5:96–102CrossRefGoogle Scholar
  53. 53.
    Shaik N, Martínez A, Augustin I et al (2009) Synthesis of apoptosis-inducing iminophosphorane Organogold(III) complexes and study of their interactions with biomolecular targets. Inorg Chem 48:1577–1587CrossRefGoogle Scholar
  54. 54.
    Urig S, Fritz-Wolf K, Réau R et al (2006) Undressing of phosphine gold(I) complexes as irreversible inhibitors of human disulfide reductases. Angew Chem Int Ed 45:1881–1886CrossRefGoogle Scholar
  55. 55.
    Snyder RM, Mirabelli CK, Johnson RK et al (1986) Modulation of the antitumor and biochemical properties of bis(diphenylphosphine)ethane with metals. Cancer Res 46:5054–5060Google Scholar
  56. 56.
    Li CK-L, Sun RW-Y, Kui SC-F et al (2006) Anticancer cyclometalated [AumIII(C^N^C)mL]n+ compounds: synthesis and cytotoxic properties. Chem Eur J 12:5253–5266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alexey A. Nazarov
    • 1
  • Paul J. Dyson
    • 1
  1. 1.Institut des Sciences et Ingénierie Chimiques, LausanneEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations