Interactions between air quality and climate change

  • E. Renner
  • Y. Zhang
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Interactions Between Climate and Air Quality

  • A. M. FioreII
  • Y. Ming
  • Y. Fang
  • L. W. Horowitz


We present two examples of air pollutant contributions to climate forcing. First, oxidation of the potent greenhouse gas methane produces tropospheric ozone, another greenhouse gas and the primary constituent of ground-level smog. Methane emission controls are thus a “win-win” strategy for jointly addressing air quality and climate goals, particularly given the availability of low-cost emission control options. Second is the “win-lose” case of aerosol sulfate, where decreases improve air quality but lead to additional warming due to decreased scattering of solar radiation. We highlight the potential for aerosols to change the hydrologic cycle and key aspects of how climate change may affect air quality, underscoring a need for evaluating chemistry-climate models with observed relationships between meteorology and air pollutants to build confidence in future projections.




Cloud Condensation Nucleus Chemistry Transport Model Cloud Droplet Number Concentration Regional Climate Model RegCM3 Peak Ozone Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Avise, J., J. Chen, B. Lamb et al. (2009) Attribution of projected changes in summertime U.S. ozone and PM2.5 concentrations to global changes. Atmos. Chem. Phys. 9:1111–1124.CrossRefGoogle Scholar
  2. Camalier, L., W. Cox, P. Dolwick (2007) The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 41:7127–7137.CrossRefGoogle Scholar
  3. Chen, J., J. Avise, B. Lamb et al. (2009) The effects of global changes upon regional ozone pollution in the United States. Atmos. Chem. Phys. 9:1125–1141.CrossRefGoogle Scholar
  4. Christenson, J.H. et al. (2007) Regional Climate Projections. In: Solomon, S. (Ed.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  5. Crutzen, P. (1973) A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys., 106–108:1385–1399.Google Scholar
  6. Delworth, T., A. Rosati, R.J. Stouffer et al. (2006) GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and simulation characteristics. J. Clim. 19(5): 643–674.CrossRefGoogle Scholar
  7. Fiore, A.M., D.J. Jacob, B.D. Field et al. (2002) Linking ozone pollution and climate change: The case for controlling methane. Geophys. Res. Lett. 29, 1919.CrossRefGoogle Scholar
  8. Fiore, A.M., J.J. West, L.W. Horowitz et al. (2008) Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. J. Geophys. Res. 113, D08307.CrossRefGoogle Scholar
  9. Fiore, A.M., F.J. Dentener, O. Wild et al. (2009) Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res., 114, D04301.CrossRefGoogle Scholar
  10. Forster, P. et al. (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In: Solomon, S. (Ed.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  11. Fuglestvedt, J.S. et al. (1999) Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane: Global model studies, Atmos. Environ. 33: 961–967.CrossRefGoogle Scholar
  12. Gillett, N.P., M.F. Wehner, S.F.B. Tett, A.J. Weaver (2004) Testing the linearity of the response to combined greenhouse gas and sulfate aerosol forcing, Geophys. Res. Lett. 31, L14201.CrossRefGoogle Scholar
  13. Guenther, A., T. Karl, P. Harley et al. (2006) Estimates of global terrestrial isoprene emissions using MEGAN. Atmos. Chem Phys. 6, 3181–3210.CrossRefGoogle Scholar
  14. Hansen, J., M. Sato, and R. Ruedy (2000) Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. 97:9875–9880.CrossRefGoogle Scholar
  15. Hogrefe, C., et al. (2004) Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions, J. Geophys. Res. 109, D22301.CrossRefGoogle Scholar
  16. Holloway, T., S. N. Spak, D. Barker et al. (2008), Change in ozone air pollution over Chicago associated with global climate change, J. Geophys. Res., 113, D22306.CrossRefGoogle Scholar
  17. Horowitz, L.W., A.M. Fiore, G.P. Milly et al. (2007) Observational constraints on the chemistry of isoprene nitrates over the eastern United States. J. Geophys. Res. 112, D12S08.CrossRefGoogle Scholar
  18. Jacob, D.J., J.A. Logan, G.M. Gardner et al. (1993) Factors regulating ozone over the the United States and its export to the global atmosphere. J. Geophys. Res. 98:14, 817–14, 826.Google Scholar
  19. Jacob, D.J. and D.A. Winner (2009), Effect of climate change on air quality, Atmos. Environ., 43, 51–63.CrossRefGoogle Scholar
  20. Leibensperger, E. M., L. J. Mickley, D. J. Jacob (2008) Sensitivity of U.S. air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change. Atmos. Chem. Phys. 8:7075–7086.CrossRefGoogle Scholar
  21. Levy, H. II, M.D. Schwarzkopf, L. Horowitz et al. (2008) Strong sensitivity of late 21st century climate to projected changes in short-lived air pollutants, J. Geophys. Res., 113, D06102.CrossRefGoogle Scholar
  22. Lin, C.-Y.C., D.J. Jacob, A.M. Fiore (2001) Trends in exceedances of the ozone air quality standard in the continental United States, 1980–1998. Atmos. Environ. 35:3217–3228.CrossRefGoogle Scholar
  23. Ming, Y., V. Ramaswamy, L.J. Donner et al. (2007) Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model. J. Atmos. Sci., 64, 1189–1209.CrossRefGoogle Scholar
  24. Ming and Ramaswamy (2009) Nonlinear climate and hydrological responses to aerosol effects. J. Clim., in press.Google Scholar
  25. Murazaki and P. Hess (2006) How does climate change contribute to surface ozone change over the United States? J. Geophys. Res., 111, D05301.CrossRefGoogle Scholar
  26. Naik, V., D. Mauzerall, L. Horowitz et al. (2007). On the sensitivity of radiative forcing from biomass burning aerosols and ozone to emission location. Geophys. Res. Lett. 34, L03818.CrossRefGoogle Scholar
  27. Porter, P.S., S.T. Rao, I.G. Zurbenko, et al. (2001) Ozone Air Quality over North America: Part II—An analysis of Trend Detection and Attribution Techniques. JAWMA 51:283–306.Google Scholar
  28. Racherla, P.,N. and P.J. Adams (2006) Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change, J. Geophys Res., 111, D24103, doi:10.1029/3005JD006939.CrossRefGoogle Scholar
  29. Reidmiller, D.R., A.M. Fiore, D.A. Jaffe et al. (2009) The influence of foreign vs. North American emissions on surface ozone in the U.S., submitted to Atmos. Chem. Phys.Google Scholar
  30. Shindell, D.T., G. Faluvegi, N. Bell, G.A. Schmidt (2005) An emissions-based view of climate forcing by methane and tropospheric ozone. Geophys. Res. Lett. 32, L04803.CrossRefGoogle Scholar
  31. Sillman, S., and P.J. Samson (1995), Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments, J. Geophys. Res., 100 (D6), 11,497-11,508.CrossRefGoogle Scholar
  32. Steiner, A. L., Tonse, S., Cohen, R. C., Goldstein, A. H., Harley, R. A. (2006), Influence of future climate and emissions on regional air quality in California, J. Geophys. Res., 111, D18303.CrossRefGoogle Scholar
  33. U.S. EPA, National Air Quality Status and Trends through 2007, EPA-454/R-08-006, November 2008, available at
  34. West, J.J. and A.M. Fiore (2005) Management of tropospheric ozone by reducing methane emissions. Environ. Sci. & Technol. 39(13): 4685–4691CrossRefGoogle Scholar


  1. Cope, ME, Lee, S, Physick, B, Abbs, D, Nguyen, K & McGregor, J (2008) ‘A methodology for determining the impact of Climate Changes on Ozone Levels in Urban Area’, Final CARP 11 report to the Federal Department of Environment, Water, Heritage and the Arts, Australia.Google Scholar


  1. Andreae MO and Rosenfeld D (2008): Aerosol-cloud-precipitation interactions, Part 1, The nature and sources of cloud-active aerosols: Earth Science Reviews, 89, 13–41Google Scholar
  2. Mitsakou and co-authors (2008): Saharan dust levels in Greece and received inhalation doses, Atmos. Chem. Phys., 8, 7181–7192Google Scholar
  3. Cotton WR and co-authors (2003): RAMS 2001: Current status and future directions. Meteoro. and Atmos Phys 82, 5–29.CrossRefGoogle Scholar
  4. Kallos G and co-authors (2009): Ten-year operational dust forecasting – Recent model development and future plans, IOP Earth and Environmental ScienceGoogle Scholar
  5. Gong SL (2003): A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global Biochemical Cycles, 17(4),1097CrossRefGoogle Scholar
  6. Nenes A and JH Seinfeld (2003): Parameterization of cloud droplet formation in global climate models, J. Geophys. Res., 108, 4415CrossRefGoogle Scholar
  7. Fountoukis C and A Nenes (2005): Continued Development of a Cloud Droplet Formation Parameterization for Global Climate Models J. Geophys. Res., 110, D11212CrossRefGoogle Scholar
  8. Astitha and G Kallos (2008): Gas-phase and aerosol chemistry interactions in South Europe and the Mediterranean Region. Env. Fl. Mech.Google Scholar


  1. Andreae, M. O., Jones, C. D. and Cox, P. M. (2005) Strong present-day aerosol cooling implies a hot future.Nature 435, 1187–1190.CrossRefGoogle Scholar
  2. Collins,W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R. and co-authors (2006) The Formulation and Atmospheric Simulation of the Community Atmospheric Model Version 3 (CAM3).J. Climate 19, 2144–2161.CrossRefGoogle Scholar
  3. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R. and co-authors. (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In:Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change(Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  4. Kirkevåg, A., Iversen, T., Seland, Ø., Debernard, J. B., Storelvmo, T. and Kristjansson,J.E. (2008) Aerosol-cloud-climate interactions in the climate model CAM-Oslo,Tellus 60A, doi: 10.1111/j.1600-0870.2008.00313.x.Google Scholar
  5. Seland, Ø and Iversen, T. (2007) Causes for spread between global models w.r.t. Lifetime and distribution of particulate sulphate.Developments in Environmental Science,6,(C. Borrego and E. Renner; Eds.). Elsevier Ltd. /DOI:10.1016/S1474-8177(07)06511-4.Google Scholar
  6. Seland, Ø., Iversen, T., Kirkevåg, A. and Storelvmo, T. (2008) Aerosol climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings.Tellus 60A, doi: 10.1111/j.1600-0870.2008.00318.x.Google Scholar
  7. Storelvmo, T., Kristjansson, J.E., Lohmann, U. Iversen, T., Kirkevåg, A. and Ø. Seland (2008) Modeling the Wegener-Bergeron-Findeisen process – implications for aerosol indirect effects.Environ. Res. Lett. 3. 045001. doi:10.1088/1748-9326/3/4/045001.CrossRefGoogle Scholar
  8. Solomon, S., D. Qin, M. Manning, and co-authors (2007) Technical Summary. In:Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  9. Stainforth, D. A., Aina, T., Christensen, C.., Collins, M., Faull, N. Frame, D.J., Kettleborough, J.A., Knight, S., Martin, A., Murphy, J.M., Piani, C., Sexton, D., Smith, L.A., Spicer, R.A., Thorpe, A.J., and Allen, M.R. (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases.Nature 433, 403–406.CrossRefGoogle Scholar


  1. IPCC, 2007: Climate Change 2007. The Physical Science Basis, 996 pp., Cambridge Univ. Press, New York, 2007.Google Scholar
  2. Juda-Rezler, K., 2006: Assessing the Winter Time Air Pollution in Cracow (Poland) in Relation with Possible Influences on Human Health and Cultural Heritage.Pol. J. Env. Stud., 15 (5c), 123–128.Google Scholar
  3. Krüger, B.C. et al., 2008: Regional photochemical model calculations for Europe concerning ozone levels in a changing climate.Q. J. Hung. Meteor. Serv.,112, No. 3–4, 285–300.Google Scholar
  4. Pal, J. S. et al., 2007: Regional climate modelling for the developing world: The ICTP RegCM3 and RegCNET.B. Am. Meteorol. Soc.,88, 1395–1409.CrossRefGoogle Scholar
  5. Stern, R.M. et al., 2008 : A model intercomparison study focussing on episodes with elevated PM10 concentrations.Atmos. Env.,42, 4567–4588.CrossRefGoogle Scholar


  1. Elguindi, N., X. Bi, F. Giorgi, B. Nagarajan, J. Pal, F. Solmon, S. Rauscher, A. Zakey, 2006: RegCM Version 3.1 User’s Guide. PWCG Abdus Salam ICTP.Google Scholar
  2. ENVIRON Corp., 2006: CAMx Users’ Guide, version 4.40Google Scholar
  3. Gery, M.W., G.Z. Whitten, J.P. Killus, and M.C. Dodge. 1989: A Photochemical Kinetics Mechanism for Urban and Regional Scale Computer Modeling. J. Geophys. Res., 94, 925–956.CrossRefGoogle Scholar
  4. Giorgi, F., X. Bi, Y. Qian, 2002: Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study. J. Geophys. Res., 107, 4439, doi:10.1029/2001JD001066.CrossRefGoogle Scholar
  5. Giorgi, F., Y. Huang, K. Nishizawa and C. Fu, 1999: A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. Journal of Geophysical Research, 104, 6403–6423.CrossRefGoogle Scholar
  6. Guenther, A.B., Zimmerman, P.R., Harley, P.C., Monson, R.K., and Fall, R., 1993: Isoprene and monoterpene rate variability: model evaluations and sensitivity analyses, J. Geophys. Res., 98, No. D7, 12609–12617.CrossRefGoogle Scholar
  7. Guenther, A., Zimmerman, P., and Wildermuth, M., 1994: Natural volatile organic compound emission rate estimates for U.S. woodland landscapes, Atmospheric Environment, 28, 1197–1210.CrossRefGoogle Scholar
  8. Katragkou, E., P. Zanis, I. Tegoulias, D. Melas, 2009: Tropospheric ozone in regional climate-air quality simulations over Europe: Future climate and sensitivity analysis. Proceedings 30th NATO/SPS International Technical Meeting on Air Pollution Modelling and its Application.Google Scholar
  9. Krüger B. C., E. Katragkou, I. Tegoulias, P. Zanis, D. Melas, E. Coppola, S. Rauscher, P. Huszar and T. Halenka, 2008: Regional decadal photochemical model calculations for Europe concerning ozone levels in a changing climate, Quarterly J. of the Hungarian Meteorol. Service, Idojaras, 112, 3–4, 285–300.Google Scholar
  10. Pal, J. S., F. Giorgi, X. Bi, N. Elguindi, F. Solmon, X. Gao, S. A. Rauscher, R. Francisco, A. Zakey, J. Winter, M. Ashfaq, F. S. Syed, J. L. Bell, N. S. Diffenbaugh, J. Karmacharya, A. Konaré, D. Martinez, R. P. da Rocha, L. C. Sloan, and A. L. Steiner, 2007: Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteorol. Soc., 88, 9, 1395–1409.CrossRefGoogle Scholar
  11. Qian, Y., F. Giorgi, 2000: Regional climatic effects of anthropogenic aerosols? The case of Southwestern China, Geophys. Res. Lett., 27(21), 3521–3524, 10.1029/2000GL011942.Google Scholar
  12. Qian, Y., F. Giorgi, Y. Huang, W.L. Chameides, and C. Luo, 2001: Simulation of anthropogenic sulfur over East Asia with a regional coupled chemistry/climate model. Tellus, Ser. B, 53, 171–191.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Insitute for Tropospheric Research Modelling DepartmentLeipzigGermany
  2. 2.Department of Marine Earth and Atmospheric ScienceNorth Carolina State UniversityRaleighUSA

Personalised recommendations